Laser Spectroscopy V

Laser Spectroscopy V

Author: A. R. W. McKellar

Publisher: Springer

Published: 2013-06-05

Total Pages: 493

ISBN-13: 3540388044

DOWNLOAD EBOOK

The Fifth International Conference on Laser Spectroscopy or VICOLS, was held at Jasper Park Lodge, in Jasper, Canada, June 29 to July 3, 1981. Following the tradition of the previous conferences in Vail, Megeve, Jackson Lake, and Rottach-Egern, it was hoped that VICOLS would provide an opportunity for act ive scientists to meet in an informal atmosphere for discussions of recent developments and applications in laser spectroscopy. The excellent conference facilities and remote location of Jasper Park Lodge in the heart of the Canadian Rockies, amply fulfilled these expectations. The conference was truly international, with 230 scientists from 19 countries participating. The busy program of invited talks lasted four days, with two evening sessions, one a panel discussion on Rydberg state spectro scopy, the other a lively poster session of approximately 60 post-deadline papers. We wish to thank all of the participants for their outstanding contribu tions and for preparation of their papers, now available to a wider audience. Our thanks go to the members of the International Steering Committee for their suggestions and recommendations. We are especially pleased to have held this conference under the auspices of the International Union of Pure and Applied Physics. VICOLS would not have been possible with out the financial support of the Natural Sciences and Engineering Research Council of Canada, and the Office of Naval Research and Air Force Office of Scientific Research of the United States* of America.


Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics

Author: Paul R. Berman

Publisher: Princeton University Press

Published: 2010-12-13

Total Pages: 538

ISBN-13: 1400837049

DOWNLOAD EBOOK

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)


Laser Spectroscopy

Laser Spectroscopy

Author: Wolfgang Demtröder

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 997

ISBN-13: 3662051559

DOWNLOAD EBOOK

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.


Laser-induced Breakdown Spectroscopy (LIBS)

Laser-induced Breakdown Spectroscopy (LIBS)

Author: Andrzej W. Miziolek

Publisher:

Published: 2014-05-14

Total Pages: 640

ISBN-13: 9780511246692

DOWNLOAD EBOOK

This is the first comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.


Laser Photoionization Spectroscopy

Laser Photoionization Spectroscopy

Author: Vladilen Letokhov

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 364

ISBN-13: 0323154085

DOWNLOAD EBOOK

Laser Photoionization Spectroscopy discusses the features and the development of photoionization technique. This book explores the progress in the application of lasers, which improve the characteristics of spectroscopic methods. Organized into 12 chapters, this book starts with an overview of the fundamentals of the method for atoms and molecules. This text then examines the photoionization spectroscopy, which is based on the laser resonant excitation of particles into high-lying quantum states that are easy to detect by ionization. Other chapters explain the various basic schemes of multistep excitation, which can be used for resonance photoionization of molecules. This book discusses as well the different applications of the resonance photoionization technique in atomic and molecular spectroscopy. The final chapter considers the two well-known types of microscopy, namely, wave and corpuscular. This book is a valuable resource for chemists, physicists, analysts, and geochemists who are interested in laser spectroscopy techniques to solve nontrivial problems.


Nonlinear Laser Spectroscopy

Nonlinear Laser Spectroscopy

Author: V. S. Letokhov

Publisher: Springer

Published: 2014-04-18

Total Pages: 466

ISBN-13: 9783662134870

DOWNLOAD EBOOK

The laser as a source of coherent optical radiation has made it possible to investigate nonlinear interaction of optical radiation with atoms and mole cules. Its availability has given rise to new research fields, such as non linear optics, laser spectroscopy, laser photochemistry, that lie at the boundary between quantum electronics and physical optics, optical spectros copy and photochemistry, respectively. The use of coherent optical radiation in each of these fields has led to the discovery of qualitatively ne\~ effects and possibilities; in particular, some rather subtle effects of interaction between highly monochromatic light and atoms and molecules, in optical spec troscopy, have formed the bases for certain methods of so-called nonlinear, laser Doppler-free spectroscopy. These methods have made it possible to in 5 6 crease the resolution of spectroscopic studies from between 10 and 10 , lim 11 ited by Doppl er 1 i ne broadeni ng up, to about 10 ; at present some 1 abor atories are developing new techniques that have even higher resolution. The discovery and elaboration of the methods of nonlinear laser spectroscopy have resulted largely from contributions by scientists from many countries, in particular from the USA (Massachusetts Institute of Technology, Stanford Uni versity, National Bureau of Standards in Boulder, Harvard University, etc. ), the USSR (P. N. Levedev Institute of Physics, Institute of Semiconductor Phys ics in Novosibirsk, Institute of Spectroscopy, etc.


Femtosecond Laser Spectroscopy

Femtosecond Laser Spectroscopy

Author: Peter Hannaford

Publisher: Springer Science & Business Media

Published: 2005-12-27

Total Pages: 350

ISBN-13: 038723294X

DOWNLOAD EBOOK

The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated. As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for n- reactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.


Molecular and Laser Spectroscopy

Molecular and Laser Spectroscopy

Author: V.P. Gupta

Publisher: Elsevier

Published: 2020-07-10

Total Pages: 706

ISBN-13: 0128188715

DOWNLOAD EBOOK

Molecular and Laser Spectroscopy, Advances and Applications: Volume 2 gives students and researchers an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. This book covers basic principles and advances in several conventional as well as new and upcoming areas of molecular and laser spectroscopy, such as a wide range of applications in medical science, material science, standoff detection, defence and security, chemicals and pharmaceuticals, and environmental science. It covers the latest advancements, both in terms of techniques and applications, and highlights future projections. Editors V.P. Gupta and Yukihiro Ozaki have brought together eminent scientists in different areas of spectroscopy to develop specialized topics in conventional molecular spectroscopy (Cavity ringdown, Matrix Isolation, Intense THz, Far- and Deep- UV, Optogalvanic ), linear and nonlinear laser spectroscopy (Rayleigh & Raman Scattering), Ultrafast Time-resolved spectroscopy, and medical applications of molecular spectroscopy. and advanced material found in research articles. This new volume expands upon the topics covered in the first volume for scientists to learn the latest techniques and put them to practical use in their work. - Covers several areas of spectroscopy research and expands upon topics covered in the first volume - Includes exhaustive lists of research articles, reviews, and books at the end of each chapter to further learning objectives - Uses illustrative examples of the varied applications to provide a practical guide to those interested in using molecular and laser spectroscopy tools in their research


Optical Spectroscopy

Optical Spectroscopy

Author: Nikolai V. Tkachenko

Publisher: Elsevier

Published: 2006-06-06

Total Pages: 323

ISBN-13: 0080461727

DOWNLOAD EBOOK

Optical Spectroscopy bridges a gap by providing a background on optics while focusing on spectroscopic methodologies, tools and instrumentations. The book introduces the most widely used steady-state and time-resolved spectroscopic techniques, makes comparisions between them, and provides the methodology for estimating the most important characteristics of the techniques such as sensitivity and time resolution. Recent developments in lasers, optics and electronics has had a significant impact on modern optical spectroscopic methods and instrumentations. Combining the newest lasers, advanced detectors and other high technology components researchers are able to assemble a spectroscopic instrument with characteristics that were hardly achievable a decade ago. This book will help readers to sourse spectroscopy tools to solve their problems by providing information on the most widely used methods while introducing readers to the principles of quantitative analysis of the application range for each methodology. In addition, background information is provided on optics, optical measurements and laser physics, which is of crucial importance for spectroscopic applications.* provides an overview of the most popular absorption/emission spectroscopy techniques* discusses application range, advantages and disadvantages are compared for different spectroscopy methods* provides introductions to the relevant topics such as optics and laser physics