This is a comprehensive tutorial on the emerging technology of free-space laser communications (FSLC). The book offers an all-inclusive source of information on the basics of FSLC, and a review of state-of-the-art technologies. Coverage includes atmospheric effects for laser propagation and FSLC systems performance and design. Free-Space Laser Communications is a valuable resource for engineers, scientists and students interested in laser communication systems designed for the atmospheric optical channel.
This groundbreaking resource is the first book to offer you a thorough, practical treatment of laser space communications. The book focuses on the feasibility of laser space communication links between satellites, satellites and airborne platforms, and satellites and ground based stations to achieve worldwide connectivity. You get expert guidance on weather avoidance approaches and adaptive antenna subsystems that help mitigate the effects of turbulence. The book presents simplified, yet highly accurate, engineering expressions of complex mathematics of turbulence that provide you with numerical values in the links' signal power budget. Moreover, you find an entire chapter devoted to noise photons and their effect on the bit error rate. This comprehensive volume covers a wide range of critical topics you need to understand for your work in the field, from a discussion on laser vs. RF communications in space, basic design features of a laser transceiver, and configuration of inter-satellite communication links, to selection of ground station locations, 5th Generation Internet (5-GENIN), and signal modulation schemes. The book is supported with over 70 illustrations and more than 100 equations.
A concise volume exploring the basic fundamentals of modern laser communication systems, this book provides comprehensive information from a system designer's point of view. The book provides a thorough review of history, architectures, design methodologies, optical design guidelines, and tracking and communication processes. It explains exactly how to design a laser communication system and its potential applications.
This reference provides an overview of near-Earth laser communication theory developments including component and subsystem technologies, fundamental limitations, and approaches to reach those limits. It covers basic concepts and state-of-the-art technologies, emphasizing device technology, implementation techniques, and system trades. The authors discuss hardware technologies and their applications, and also explore ongoing research activities and those planned for the near future. This new edition includes major to minor revisions with technology updates on nearly all chapters.
A quarter century of research into deep space and near Earth optical communications This book captures a quarter century of research and development in deep space optical communications from the Jet Propulsion Laboratory (JPL). Additionally, it presents findings from other optical communications research groups from around the world for a full perspective. Readers are brought up to date with the latest developments in optical communications technology, as well as the state of the art in component and subsystem technologies, fundamental limitations, and approaches to develop and fully exploit new technologies. The book explores the unique requirements and technologies for deep space optical communications, including: * Technology overview; link and system design drivers * Atmospheric transmission, propagation, and reception issues * Flight and ground terminal architecture and subsystems * Future prospects and applications, including navigational tracking and light science This is the first book to specifically address deep space optical communications. With an increasing demand for data from planetary spacecraft and other sources, it is essential reading for all optical communications, telecommunications, and system engineers, as well as technical managers in the aerospace industry. It is also recommended for graduate students interested in deep space communications.
Invented more than a hundred years ago by Alexander Graham Bell, the technology of free-space optical communications, or lasercom, has finally reached the level of maturity required to meet a growing demand for operational multi-giga-bit-per-second data rate systems communicating to and from aircrafts and satellites. Putting the emphasis on near-earth links, including air, LEO, MEO, and GEO orbits, Near-Earth Laser Communications presents a summary of important free-space laser communication subsystem challenges and discusses potential ways to overcome them. This comprehensive reference provides up-to-date information on component and subsystem technologies, fundamental limitations, and approaches to reach those limits. It covers basic concepts and state-of-the-art technologies, emphasizing device technology, implementation techniques, and system trades. The authors discuss hardware technologies and their applications, and also explore ongoing research activities and those planned for the near future. The analytical aspects of laser communication have been covered to a great extent in several books. However, a detailed approach to system design and development, including trades on subsystem choices and implications of the hardware selection for satellite and aircraft telecommunications, is missing. Highlighting key design variations and critical differences between them, this book distills decades’ worth of experience into a practical resource on hardware technologies.
This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.
Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.