Laser and Electron Beam Processing of Materials

Laser and Electron Beam Processing of Materials

Author: C.W. White

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 788

ISBN-13: 0323142532

DOWNLOAD EBOOK

Laser and Electron Beam Processing of Materials contains the papers presented at the symposium on "Laser and Electron Beam Processing of Materials," held in Cambridge, Massachusetts, in November 1979, sponsored by the Materials Research Society. The compilation presents reports and research papers on the use of directed energy sources, such as lasers and electron beams for materials processing. The majority of the materials presented emphasize results on semiconductor materials research. Substantial findings on research on metals, alloys, and other materials are presented as well. Topics covered by the papers include the use of scanned cw sources (both photons and electrons) to recrystallize amorphous layers, enhanced substitutional solubility, solute trapping, zone refining of impurities, and constitutional supercooling. The use of lasers and electron beams to anneal ion implant damage and contacts formation, processing of ion-implanted metals, and surface alloying of films deposited on metallic surfaces are also discussed. Metallurgists, engineers, and materials scientists will find the book very insightful.


Laser Materials Processing

Laser Materials Processing

Author: Michael Bass

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 491

ISBN-13: 0444601325

DOWNLOAD EBOOK

Laser Materials Processing aims to introduce lasers and laser systems to the newcomers to laser terminology and to provide enough background material on lasers to reduce one's hesitation to employ these devices. The book covers the use of lasers in materials processing, including its application in cutting and welding, as well as the principles behind them; laser heat treatment; rapid solidification laser processing at high power density; shaping of materials using lasers; and laser processing of semiconductors. The selection also covers considerations in laser manufacturing and a survey in laser applications. The text is recommended for both experienced laser users, engineers, or scientists yet unfamiliar with the subject. The book is also recommended for those who wish to know about the importance of lasers in the field of materials processing, as the bulk of the book is devoted to the discussions of some of the most important materials processing activities in use or under development.


Laser-Assisted Microtechnology

Laser-Assisted Microtechnology

Author: Simeon M. Metev

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 283

ISBN-13: 3642973272

DOWNLOAD EBOOK

Laser-Assisted Microtechnology deals with laser applications to a wide variety of problems in microelectronic design and fabrication. It covers micromachining of thin films, microprocessing of materials, maskless laser micropatterning and laser-assisted synthesis of thin-film systems. The monograph describes fundamental aspects and practical details of the technological processes as well as the optimum conditions for their realization.


Physical Processes in Laser-Materials Interactions

Physical Processes in Laser-Materials Interactions

Author: M. Bertolotti

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 518

ISBN-13: 1468443224

DOWNLOAD EBOOK

It is a pleasure to write a few words as an introduction to the proceedings of the 1980 NATO ASI on "Physical Processes in Laser Naterial Interaction." This ASI is the ninth course of a series devoted to lasers and their applications, held under the responsibility of the Quantum Electronics Division of the European Physical Society, and for this reason known as the "Europhysics School of Quantum Electronics." Since 1971 the School has been operating with the joint direc tion of myself as representative of the academic research, and Dr. D. Roess (formerly with Siemens AEG, Munich, and now with Sick, Optik und Electronik, GmbH, Munich) for the industrial applications. Indeed the aim of the School is to alternate fundamental and applied frontier topics in the area of quantum electronics and modern optics, in order to introduce young research people from universities and industrial R&D laboratories to the new aspects of research opened by the laser.


Handbook of Liquids-Assisted Laser Processing

Handbook of Liquids-Assisted Laser Processing

Author: Arvi Kruusing

Publisher: Elsevier

Published: 2010-07-07

Total Pages: 465

ISBN-13: 0080555047

DOWNLOAD EBOOK

Laser processing of solid materials has been commonly performed in gas ambient. Having the workpiece immersed into liquid, having a liquid film on it, or soaking the material with liquid gives several advantages such as removal of the debris, lowering the heat load on the workpiece, and confining the vapour and plasma, resulting in higher shock pressure on the surface. Introduced in the 1980s, neutral liquids assisted laser processing (LALP) has proved to be advantageous in the cutting of heat-sensitive materials, shock peening of machine parts, cleaning of surfaces, fabrication of micro-optical components, and for generation of nanoparticles in liquids. The liquids used range from water through organic solvents to cryoliquids. The primary aim of Handbook of Liquids-Assisted Laser Processing is to present the essentials of previous research (tabulated data of experimental conditions and results), and help researchers develop new processing and diagnostics techniques (presenting data of liquids and a review of physical phenomena associated with LALP). Engineers can use the research results and technological innovation information to plan their materials processing tasks. Laser processing in liquids has been applied to a number of different tasks in various fields such as mechanical engineering, microengineering, chemistry, optics, and bioscience. A comprehensive glossary with definitions of the terms and explanations has been added. The book covers the use of chemically inert liquids under normal conditions. Laser chemical processing examples are presented for comparison only. - First book in this rapidly growing field impacting mechanical and micro/nano-engineering - Covers different kinds of liquid-assisted laser processing of a large variety of materials - Covers lasers emitting from UV to IR with pulse lengths down to femtoseconds - Reviews over 500 scientific articles and 300 inventions and tabulates their main features - Gives a qualitative and quantitative description of the physical phenomena associated with LALP - Tabulates 61 parameters for 100 liquids - Glossary of over 200 terms and abbreviations


Laser Processing: Surface Treatment and Film Deposition

Laser Processing: Surface Treatment and Film Deposition

Author: J. Mazumder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 937

ISBN-13: 9400901976

DOWNLOAD EBOOK

Synthesis of nonequilibrium metallic phases has been an area of great interest to the materials processing community since early 1960. Inherent rapid cooling rates in laser processing are being used to engineer non-equilibrium microstructures which cannot be rivaled by other processes. This lecture will discuss the phenomena involved and its application in designing materials with tailored properties. What is non-equilibrium Synthesis? This is a synthesis method to produce binary or higher order materials where kinetics of the pro cess affects the transport of the constituent elements during phase transformation resulting in a composition or crystallographic configuration which is different from what is observed when the elements arranges themselves with the lowest possible Gibbs Free energy, which is the equilibrium condition. Figure 1 illustrates the phenomena. Phase diagram under equilibrium condition is illustrated by the solid line whereas the no-equilibrium phase diagram is represented by the dotted line. One can observe the shrinkage of the phase field under non-equilibrium condition. Any alloy composition between the solidus lines of the equilibrium and non-equilibrium phase diagram will be a non equilibrium alloys with extended solid solution.


Laser Processing and Diagnostics

Laser Processing and Diagnostics

Author: D. Bäuerle

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 561

ISBN-13: 3642823815

DOWNLOAD EBOOK

Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.


Laser Processing and Analysis of Materials

Laser Processing and Analysis of Materials

Author: Walter W. Duley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 449

ISBN-13: 1475701934

DOWNLOAD EBOOK

It has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo chemistry is undergoing revolutionary changes with several proven and many promising commercial laser processing operations as the result. The ability of laser sources to project a probing beam of light into remote or hostile environments has led to the development of a wide variety of new analytical techniques in environmental and laboratory analysis. Many of these are reviewed in this book.


Energy Research Abstracts

Energy Research Abstracts

Author:

Publisher:

Published: 1979

Total Pages: 1174

ISBN-13:

DOWNLOAD EBOOK

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.