Laser Imaging and Manipulation in Cell Biology

Laser Imaging and Manipulation in Cell Biology

Author: Francesco S. Pavone

Publisher: John Wiley & Sons

Published: 2011-07-28

Total Pages: 229

ISBN-13: 3527632255

DOWNLOAD EBOOK

Here, the editor has gathered a team of international experts to present the latest advances in the field of laser imaging and manipulation techniques. The result is broad coverage of the interactions with biological samples to perform novel optical manipulation operations, both on the cellular and tissue levels. Of interest to physicists working and researching laser tissue mechanisms, cell biologists investigating new imaging and manipulation operation on the cellular level, medical doctors working with new laser therapies and diagnostic tools, as well as engineers developing new technologies in the field of optics and lasers.


Laser Manipulation of Cells and Tissues

Laser Manipulation of Cells and Tissues

Author: Michael W. Berns

Publisher: Academic Press

Published: 2007-06-20

Total Pages: 824

ISBN-13:

DOWNLOAD EBOOK

The use of laser-based manipulation tools has literally exploded on the cell biology and molecular pathology scene, resulting in as many different laser micromanipulation systems as there are people using them. Laser Manipulation of Cells and Tissues ties all these systems and studies together, describing all of the different kinds of research and practical/analytical applications of laser manipulation. It also provides the reader with the basic information needed to actually build one's own laser micro-manipulation system. The combination of imaging and molecular probe technology with laser micromanipulation greatly extends the use of this technology in molecular, cellular, developmental and patho-biology/medicine. This book should be valuable to scientists, clinicians, and students in the fields of cell and developmental biology, cell physiology, cancer biology, pathology, and stem cell biology. Devotes four chapters to laser catapulting and capture of DNA and other cellular material for biochemical analysis - a major use of this technology that has been adapted for molecular pathology both in clinical medicine and research Discusses the theory of laser tweezers (optical tweezers) and its application to novel problems in biology Covers topics on optoporation (getting things into cells), uncaging of molecules, and the ability to collect and analyze nanomolar amounts of cell material by an array of biochemical/physical tools of particular interest to cell biologists and drug discovery researchers


Laser Tweezers in Cell Biology

Laser Tweezers in Cell Biology

Author:

Publisher: Academic Press

Published: 1997-11-24

Total Pages: 241

ISBN-13: 0080859534

DOWNLOAD EBOOK

Volume 55 in Methods in Cell Biology is a concise laboratory book that emphasizes the methods and technologies needed to use single polarized laser light source that functions simultaneously as an optical trap and a dual-beam interferometer. * * Provides a practical laboratory guide for methods and technologies used with laser tweezers* Includes comprehensive and easy-to-follow protocols


Pulsed Laser Microbeams for Cellular Manipulation

Pulsed Laser Microbeams for Cellular Manipulation

Author: Amy Noel Stacy Hellman

Publisher: ProQuest

Published: 2008

Total Pages: 174

ISBN-13: 9780549605348

DOWNLOAD EBOOK

Highly focused pulsed laser radiation (pulsed laser microbeams) provide the ability to deposit energy with high spatial precision and controllable cellular damage. As a result, pulsed laser microbeams have been explored as a fast, non-contact means for cellular manipulations such as cellular microsurgery, transient cell membrane permeabilization, and targeted cell lysis. In this dissertation we examine the mechanisms of highly focused laser microbeams of nanosecond and picosecond duration to achieve cell lysis, cell necrosis, and molecular delivery. We have developed a time-resolved imaging system to visualize these processes with nanosecond temporal resolution and use image analysis to measure the physical perturbation applied to the cells as a function of laser microbeam pulse energy and pulse duration. Fluorescence assays are used to assess the biological response (necrosis, molecular delivery, and biochemical pathway activity) to the laser microbeam irradiation, and a biophysical model is developed to establish connections between specific physical characteristics and the resulting cellular effect. Our studies reveal that pulsed laser microbeam processes are mediated by optical breakdown resulting in plasma formation, shock wave emission, and cavitation bubble formation, expansion, and collapse. Cavitation bubble expansion was found to be the primary mechanism responsible for cellular modification. Hydrodynamic analysis based on the measured time evolution of the cavitation bubble growth, combined with assessment of the cellular response, revealed that the maximum wall shear stress associated with the cavitation bubble expansion governs the location and spatial extent of cell lysis, cell necrosis, and molecular delivery. In addition, we demonstrate how the variation of laser microbeam pulse duration can allow modulation of the spatial extent of cellular modification in order to tailor the cellular perturbations and optimize specific applications. These detailed studies provide a basis for the informed selection of specific laser parameters (i.e. pulse duration and energy) to achieve a desired cellular outcome, with controllable degrees of collateral damage. We demonstrate three different applications in which the laser parameters are well matched for particular applications in cellular analytics, activation of biochemical pathways, and microfluidics.


Lasers and Current Optical Techniques in Biology

Lasers and Current Optical Techniques in Biology

Author: Giuseppe Palumbo

Publisher: Royal Society of Chemistry

Published: 2007-10-31

Total Pages: 684

ISBN-13: 1847551203

DOWNLOAD EBOOK

The introduction of innovative light sources, fibre laser sources and light emitting diodes, is opening unexpected perspectives into optical techniques and is promising new exciting applications in the field of biomedicine. Lasers and Current Optical Techniques in Biology aims to provide an overview of light sources, together with an extensive and authoritative description of the optical techniques in bio-medicine. This book is designed to give biomedical researchers a strong feel for the capability of physical approaches, promote new interdisciplinary interests and persuade more practitioners to take advantage of optical techniques. Current developments in a variety of optical techniques, including Near-Infra Red Spectroscopy, and traditional and advanced fluorescence techniques are covered, ranging from those that are becoming common practice to those that need much more experimentation before they can be accepted as real breakthroughs. Further topics include optical coherence tomography and its variations, polarised light imaging and, principle laser and lamp sources- a usually fragmentary topic, often dispersed among specialist publications. The wide range of topics covered make Lasers and Current Optical Techniques in Biology of interest to a diverse range of scientific communities.


Micromanipulation by Light in Biology and Medicine

Micromanipulation by Light in Biology and Medicine

Author: Karl Otto Greulich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 308

ISBN-13: 1461241103

DOWNLOAD EBOOK

There are probably few people who do not dream of the good old times, when do ing science often meant fascination, excitement, even adventure. In our time, do ing science involves often technology and, perhaps, even business. But there are still niches where curiosity and fascination have their place. The subject of this book, technological as its title may sound, is one of the fortunate examples. It will report on lasers generating the coldest places in the Universe, and on table top laser microtools which can produce a heat "inferno" as it prevails in the interior of the Sun, or simulate, for specific plant cells, microgravity of the space around our plan et Earth. There will be some real surprises for the reader. The applications range from basic studies of the driving forces of cell division (and thus life) via genetic modification of cells (for example, for plant breeding) to medical applications such as blood cell analysis and finally in vitro fertilization. What are these instruments: laser microbeams and optical tweezers? Both are lasers coupled with a fluorescence microscope. The laser microbeam uses a pulsed ultraviolet laser. Light is focused, as well as possible, in space and time, in order to obtain extremely high light intensities - high enough to generate, for a very short instant, extremely hot spots which can be used to cut, fuse or perforate biological material.


Laser Manipulation of Cells and Tissues

Laser Manipulation of Cells and Tissues

Author: Michael W. Berns

Publisher: Academic Press

Published: 2007-07-04

Total Pages: 792

ISBN-13: 9780123706485

DOWNLOAD EBOOK

The use of laser-based manipulation tools has literally exploded on the cell biology and molecular pathology scene, resulting in as many different laser micromanipulation systems as there are people using them. Laser Manipulation of Cells and Tissues ties all these systems and studies together, describing all of the different kinds of research and practical/analytical applications of laser manipulation. It also provides the reader with the basic information needed to actually build one's own laser micro-manipulation system. The combination of imaging and molecular probe technology with laser micromanipulation greatly extends the use of this technology in molecular, cellular, developmental and patho-biology/medicine. This book should be valuable to scientists, clinicians, and students in the fields of cell and developmental biology, cell physiology, cancer biology, pathology, and stem cell biology. Devotes four chapters to laser catapulting and capture of DNA and other cellular material for biochemical analysis - a major use of this technology that has been adapted for molecular pathology both in clinical medicine and research Discusses the theory of laser tweezers (optical tweezers) and its application to novel problems in biology Covers topics on optoporation (getting things into cells), uncaging of molecules, and the ability to collect and analyze nanomolar amounts of cell material by an array of biochemical/physical tools of particular interest to cell biologists and drug discovery researchers


Imaging from Cells to Animals In Vivo

Imaging from Cells to Animals In Vivo

Author: Margarida Barroso

Publisher: CRC Press

Published: 2020-12-03

Total Pages: 444

ISBN-13: 1351704494

DOWNLOAD EBOOK

This book offers an overview of imaging techniques used to investigate cells and tissue in their native environment. It covers the range of imaging approaches used, as well as the application of those techniques to the study of biological processes in cells and whole tissues within living organisms.