Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.
Laser cooling of atoms provides an ideal case study for the application of Lévy statistics in a privileged situation where the statistical model can be derived from first principles. This book demonstrates how the most efficient laser cooling techniques can be simply and quantitatively understood in terms of non-ergodic random processes dominated by a few rare events. Lévy statistics are now recognised as the proper tool for analysing many different problems for which standard Gaussian statistics are inadequate. Laser cooling provides a simple example of how Lévy statistics can yield analytic predictions that can be compared to other theoretical approaches and experimental results. The authors of this book are world leaders in the fields of laser cooling and light-atom interactions, and are renowned for their clear presentation. This book will therefore hold much interest for graduate students and researchers in the fields of atomic physics, quantum optics, and statistical physics.
Provides an overview of the basic principles of laser cooling of atoms, ions, nanoparticles, and solids, including Doppler cooling, polarization gradient cooling, different sub-recoil schemes of laser cooling, forced evaporation, laser cooing with anti-Stokes fluorescence, hybrid laser cooling, and Raman and Brillouin cooling.
Carl Wieman's contributions have had a major impact on defining the field of atomic physics as it exists today. His ground-breaking research has included precision laser spectroscopy; using lasers and atoms to provide important table-top tests of theories of elementary particle physics; the development of techniques to cool and trap atoms using laser light, particularly in inventing much simpler, less expensive ways to do this; the understanding of how atoms interact with one another and light at ultracold temperatures; and the creation of the first Bose-Einstein condensation in a dilute gas, and the study of the properties of this condensate. In recent years, he has also turned his attention to physics education and new methods and research in that area. This indispensable volume presents his collected papers, with annotations from the author, tracing his fascinating research path and providing valuable insight about the significance of the works.
Papers written during the last 40 years by Claude Cohen-Tannoudji and his collaborators on various physical effects which can be observed on atoms interacting with electromagnetic fields.
“French Nobel Laureate Claude Cohen-Tannoudji is second to none in his understanding of the modern theory and application of atom-photon interactions. He is also known for his lucid and accessible writing style … Advances in Atomic Physics is an impressive and wonderful-to-read reference text … Certainly researchers in the fields of atom-photon interactions and atom traps will want it as a reference on their bookshelves … A selection of chapters may be of benefit to students: the early chapters for those entering the field, the later chapters for those already doing atom-laser PhD thesis work.”Physics TodayThis book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.
This important volume contains selected papers and extensive commentaries on laser trapping and manipulation of neutral particles using radiation pressure forces. Such techniques apply to a variety of small particles, such as atoms, molecules, macroscopic dielectric particles, living cells, and organelles within cells. These optical methods have had a revolutionary impact on the fields of atomic and molecular physics, biophysics, and many aspects of nanotechnology.In atomic physics, the trapping and cooling of atoms down to nanokelvins and even picokelvin temperatures are possible. These are the lowest temperatures in the universe. This made possible the first demonstration of Bose-Einstein condensation of atomic and molecular vapors. Some of the applications are high precision atomic clocks, gyroscopes, the measurement of gravity, cryptology, atomic computers, cavity quantum electrodynamics and coherent atom lasers.A major application in biophysics is the study of the mechanical properties of the many types of motor molecules, mechanoenzymes, and other macromolecules responsible for the motion of organelles within cells and the locomotion of entire cells. Unique in vitro and in vivo assays study the driving forces, stepping motion, kinetics, and efficiency of these motors as they move along the cell's cytoskeleton. Positional and temporal resolutions have been achieved, making possible the study of RNA and DNA polymerases, as they undergo their various copying, backtracking, and error correcting functions on a single base pair basis.Many applications in nanotechnology involve particle and cell sorting, particle rotation, microfabrication of simple machines, microfluidics, and other micrometer devices. The number of applications continues to grow at a rapid rate.The author is the discoverer of optical trapping and optical tweezers. With his colleagues, he first demonstrated optical levitation, the trapping of atoms, and tweezer trapping and manipulation of living cells and biological particles.This is the only review volume covering the many fields of optical trapping and manipulation. The intention is to provide a selective guide to the literature and to teach how optical traps really work.
Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors.Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. - Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling - Particular attention is given to the physics of cooling processes and the mathematical description of these processes - Reviews previous experimental investigations in laser cooling and presents progress towards key potential applications
The First Book on Ultracold MoleculesCold molecules offer intriguing properties on which new operational principles can be based (e.g., quantum computing) or that may allow researchers to study a qualitatively new behavior of matter (e.g., Bose-Einstein condensates structured by the electric dipole interaction). This interdisciplinary book discusse