Laser Annealing of Semiconductors
Author: J. M. Poate
Publisher:
Published: 1982
Total Pages: 584
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: J. M. Poate
Publisher:
Published: 1982
Total Pages: 584
ISBN-13:
DOWNLOAD EBOOKAuthor: Fuccio Cristiano
Publisher: Woodhead Publishing
Published: 2021-04-21
Total Pages: 428
ISBN-13: 0128202564
DOWNLOAD EBOOKLaser Annealing Processes in Semiconductor Technology: Theory, Modeling and Applications in Nanoelectronics synthesizes the scientific and technological advances of laser annealing processes for current and emerging nanotechnologies. The book provides an overview of the laser-matter interactions of materials and recent advances in modeling of laser-related phenomena, with the bulk of the book focusing on current and emerging (beyond-CMOS) applications. Reviewed applications include laser annealing of CMOS, group IV semiconductors, superconducting materials, photonic materials, 2D materials. This comprehensive book is ideal for post-graduate students, new entrants, and experienced researchers in academia, research and development in materials science, physics and engineering. - Introduces the fundamentals of laser materials and device fabrication methods, including laser-matter interactions and laser-related phenomena - Addresses advances in physical modeling and in predictive simulations of laser annealing processes such as atomistic modeling and TCAD simulations - Reviews current and emerging applications of laser annealing processes such as CMOS technology and group IV semiconductors
Author: J Poate
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 577
ISBN-13: 0323145426
DOWNLOAD EBOOKLaser Annealing of Semiconductors deals with the materials science of surfaces that have been subjected to ultrafast heating by intense laser or electron beams. This book is organized into 13 chapters that specifically tackle transient annealing of compound semiconductors. After briefly dealing with an overview of laser annealing, this book goes on discussing the concepts of solidification and crystallization pertinent to the field. These topics are followed by discussions on the main mechanisms of interaction of photon and electron beams with condensed matter; the calculation of thermophysical properties of crystalline materials; and high-speed crystal growth by laser annealing of ion-implanted silicon. The subsequent chapters describe the microstructural and topographical properties of annealed semiconductor layers and the epitaxy of ion-implanted silicon irradiated with a laser or electron beam single pulse. This text also explores the electronic and surface properties and the continuous-wave beam processing of semiconductors. The concluding chapters cover various reactions in metal-semiconductor systems, such as fast and laser-induced melting, solidification, mixing, and quenching. Laser-induced interactions in metal-semiconductor systems and the factors involved in control of the heat treatment process are also discussed in these chapters. Materials scientists and researchers and device engineers will find this book invaluable.
Author: Walter W. Duley
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 449
ISBN-13: 1475701934
DOWNLOAD EBOOKIt has often been said that the laser is a solution searching for a problem. The rapid development of laser technology over the past dozen years has led to the availability of reliable, industrially rated laser sources with a wide variety of output characteristics. This, in turn, has resulted in new laser applications as the laser becomes a familiar processing and analytical tool. The field of materials science, in particular, has become a fertile one for new laser applications. Laser annealing, alloying, cladding, and heat treating were all but unknown 10 years ago. Today, each is a separate, dynamic field of research activity with many of the early laboratory experiments resulting in the development of new industrial processing techniques using laser technology. Ten years ago, chemical processing was in its infancy awaiting, primarily, the development of reliable tunable laser sources. Now, with tunability over the entire spectrum from the vacuum ultraviolet to the far infrared, photo chemistry is undergoing revolutionary changes with several proven and many promising commercial laser processing operations as the result. The ability of laser sources to project a probing beam of light into remote or hostile environments has led to the development of a wide variety of new analytical techniques in environmental and laboratory analysis. Many of these are reviewed in this book.
Author: Robert R. Alfano
Publisher:
Published: 1984
Total Pages: 486
ISBN-13:
DOWNLOAD EBOOKSemiconductors Probed by Ultrafast Laser Spectroscopy, Volume 1 discusses the use of ultrafast laser spectroscopy in studying fast physics in semiconductors. It reviews progress on the experimental and theoretical understanding of ultrafast events that occur on a picosecond and nanosecond time scale. This volume first explores the relaxation of energy and the momentum of hot carriers and then turns to relaxation of plasmas and phonons. It also discusses the dynamics of excitons, polaritons, and excitonic molecules and reviews transient transport and diffusion of carriers. Scientists, engineers ...
Author: Grégory Barbillon
Publisher: BoD – Books on Demand
Published: 2017-06-21
Total Pages: 496
ISBN-13: 9535132776
DOWNLOAD EBOOKNanoplasmonics is a young topic of research, which is part of nanophotonics and nano-optics. Nanoplasmonics concerns to the investigation of electron oscillations in metallic nanostructures and nanoparticles. Surface plasmons have optical properties, which are very interesting. For instance, surface plasmons have the unique capacity to confine light at the nanoscale. Moreover, surface plasmons are very sensitive to the surrounding medium and the properties of the materials on which they propagate. In addition to the above, the surface plasmon resonances can be controlled by adjusting the size, shape, periodicity, and materials' nature. All these optical properties can enable a great number of applications, such as biosensors, optical modulators, photodetectors, and photovoltaic devices. This book is intended for a broad audience and provides an overview of some of the fundamental knowledges and applications of nanoplasmonics.
Author: C.W. White
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 788
ISBN-13: 0323142532
DOWNLOAD EBOOKLaser and Electron Beam Processing of Materials contains the papers presented at the symposium on "Laser and Electron Beam Processing of Materials," held in Cambridge, Massachusetts, in November 1979, sponsored by the Materials Research Society. The compilation presents reports and research papers on the use of directed energy sources, such as lasers and electron beams for materials processing. The majority of the materials presented emphasize results on semiconductor materials research. Substantial findings on research on metals, alloys, and other materials are presented as well. Topics covered by the papers include the use of scanned cw sources (both photons and electrons) to recrystallize amorphous layers, enhanced substitutional solubility, solute trapping, zone refining of impurities, and constitutional supercooling. The use of lasers and electron beams to anneal ion implant damage and contacts formation, processing of ion-implanted metals, and surface alloying of films deposited on metallic surfaces are also discussed. Metallurgists, engineers, and materials scientists will find the book very insightful.
Author: Cheol Seong Hwang
Publisher: Springer Science & Business Media
Published: 2013-10-18
Total Pages: 266
ISBN-13: 146148054X
DOWNLOAD EBOOKOffering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.
Author: Allan H Johnston
Publisher: World Scientific
Published: 2010-04-27
Total Pages: 376
ISBN-13: 9814467650
DOWNLOAD EBOOKThis book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms.It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.
Author: Mohamed Henini
Publisher: Elsevier
Published: 2004-12-15
Total Pages: 648
ISBN-13: 0080455999
DOWNLOAD EBOOK- This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field. - It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas. - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community. The high speed lasers operating at wavelength of 1.3 μm and 1.55 μm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers. In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development. Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics - Contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field - Gives the reader easier access and better evaluation of future trends, conveying important results and current ideas - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community