Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges

Author: M. J. N. Priestley

Publisher: John Wiley & Sons

Published: 1996-04-12

Total Pages: 704

ISBN-13: 9780471579984

DOWNLOAD EBOOK

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges


AASHTO Guide Specifications for LRFD Seismic Bridge Design

AASHTO Guide Specifications for LRFD Seismic Bridge Design

Author:

Publisher: AASHTO

Published: 2011

Total Pages: 271

ISBN-13: 156051521X

DOWNLOAD EBOOK

This work offers guidance on bridge design for extreme events induced by human beings. This document provides the designer with information on the response of concrete bridge columns subjected to blast loads as well as blast-resistant design and detailing guidelines and analytical models of blast load distribution. The content of this guideline should be considered in situations where resisting blast loads is deemed warranted by the owner or designer.


Bridge Engineering Handbook

Bridge Engineering Handbook

Author: Wai-Fah Chen

Publisher: CRC Press

Published: 2019-09-11

Total Pages: 690

ISBN-13: 1000005925

DOWNLOAD EBOOK

First Published in 1999: The Bridge Engineering Handbook is a unique, comprehensive, and state-of-the-art reference work and resource book covering the major areas of bridge engineering with the theme "bridge to the 21st century."


Design and Construction of Bridge Approaches

Design and Construction of Bridge Approaches

Author: Harvey E. Wahls

Publisher: Transportation Research Board

Published: 1990

Total Pages: 56

ISBN-13: 9780309049054

DOWNLOAD EBOOK

Includes case histories of the Dumbarton Bridge (San Francisco Bay, Calif.), the Rainier Avenue Embankment (Seattle, Wash.) and the Gallows Road Grade Separation (Fairfax, Va.)


Expansion Joints in Buildings

Expansion Joints in Buildings

Author: National Research Council

Publisher: National Academies Press

Published: 1974-02-01

Total Pages: 53

ISBN-13: 0309022339

DOWNLOAD EBOOK

Many factors affect the amount of temperature-induced movement that occurs in a building and the extent to which this movement can occur before serious damage develops or extensive maintenance is required. In some cases joints are being omitted where they are needed, creating a risk of structural failures or causing unnecessary operations and maintenance costs. In other cases, expansion joints are being used where they are not required, increasing the initial cost of construction and creating space utilization problems. As of 1974, there were no nationally acceptable procedures for precise determination of the size and the location of expansion joints in buildings. Most designers and federal construction agencies individually adopted and developed guidelines based on experience and rough calculations leading to significant differences in the various guidelines used for locating and sizing expansion joints. In response to this complex problem, Expansion Joints in Buildings: Technical Report No. 65 provides federal agencies with practical procedures for evaluating the need for through-building expansion joints in structural framing systems. The report offers guidelines and criteria to standardize the practice of expansion joints in buildings and decrease problems associated with the misuse of expansions joints. Expansions Joints in Buildings: Technical Report No. 65 also makes notable recommendations concerning expansion, isolation, joints, and the manner in which they permit separate segments of the structural frame to expand and to contract in response to temperature fluctuations without adversely affecting the buildings structural integrity or serviceability.


Masonry Arch Bridges

Masonry Arch Bridges

Author: John Page

Publisher: Bernan Press(PA)

Published: 1993

Total Pages: 118

ISBN-13: 9780115511905

DOWNLOAD EBOOK

Masonry arch bridges are an important part of the British road and rail network. There are for instance, about 40,000 road bridges, about 40% of Britain's total bridge stock. The amount of traffic they are now called on to carry has increased enormously since they were built, as has the weight of some of that traffic. Although these bridges have been in existence for thousands of years, research on their structural behaviour is still being carried out and new analytical techniques are being developed.


Performance-based Seismic Bridge Design

Performance-based Seismic Bridge Design

Author: M. Lee Marsh

Publisher: Transportation Research Board

Published: 2013

Total Pages: 138

ISBN-13: 0309223806

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.