This self-contained introduction to astrophysical magnetic fields provides a comprehensive review of the current state of the field and a critical discussion of the latest research. Its emphasis on results that are likely to form the basis for future progress benefits a broad audience of advanced students and active researchers.
The study of extraterrestrial magnetic fields is a relatively new one, confirmation of the existance of the first such field (that of our Sun) having come a s late as 1908. In the past 30 years a great ammount of knowledge has been accumulated on Cosmic Magnetism, which has turned out to be a truly fascinating topic for study. Percy Seymour's book is the first to deal with the topic in a non-mathematical way, and he offers a fine introduction to his subject. The first three chapters consolidate our knowledge on magnetism in general and the magnetic field of the Earth, as well as discussing the reasons for studying astronomy and cosmic magnetism in particular. The remainder of the book is devoted to the main areas of cosmic magnetism - solar, plantetary and interplanetary fields, fields in stars and pulsars, fields of the milky way and fields in other galaxies. Cosmic Magnetism in an ideal book for sixth-formers and undergraduates studying physics or astronomy and will also appeal to amateur astronomers. as previous work on this topic has been 'hidden' in specialised academic journals.
IAU Symposium 259 presents the first interdisciplinary, comprehensive review of the role of cosmic magnetic fields, involving astronomers and physicists from across the community. Offering both theoretical and observational topics ranging from Earth's habitability to the origin of the universe, this is an invaluable summary for researchers and graduate students.
Solar and space physics is the study of solar system phenomena that occur in the plasma state. Examples include sunspots, the solar wind, planetary magnetospheres, radiation belts, and the aurora. While each is a distinct phenomenon, there are commonalities among them. To help define and systematize these universal aspects of the field of space physics, the National Research Council was asked by NASA's Office of Space Science to provide a scientific assessment and strategy for the study of magnetized plasmas in the solar system. This report presents that assessment. It covers a number of important research goals for solar and space physics. The report is complementary to the NRC report, The Sun to the Earthâ€"and Beyond: A Decadal Research Strategy for Solar and Space Physics, which presents priorities and strategies for future program activities.
While magnetic fields permeate the universe on all scales, the present book is dedicated to their investigation on the largest scales and affords a balanced account of both theoretical and observational aspects. Written as a set of advanced lectures and tutorial reviews that lead up to the forefront of research, this book offers both a modern source of reference for the experienced researchers as well as a high-level introductory text for postgraduate students and nonspecialist researchers working in related areas.
Magnetism, when extended beyond normal frameworks into cosmic space is characterized by an enormous spatial scale. Because of their large sizes the nature of magnets such as the Earth and the Sun is entirely different from the nature of a horseshoe magnet. The source of cosmic magnetism is associated with the hydrodynamic motions of a highly conductive medium. In this aspect, cosmic magnets resemble a dynamo. However, currents in the dynamo flow along properly ordered wires, while chaotic, turbulent motions are dominant inside stars and liquid planetary cores. This makes more intriguing and surprising the fact that these motions maintain a regular magnetic field. Maintenance of magnetic fields is even more impressive in huge magnets, i.e. galaxies. In fact, we are living inside a giant dynamo machine, the Milky Way galaxy. Although the idea of the global magnetic field of our Galaxy was clearly proposed almost 40 years ago, firm observational evidence and definite theoretical concepts of galactic magnetism have been developed only in the last decade. This book is the first attempt at a full and consistent presentation of this problem. We discuss both theoretical views on the origin of galactic magnetism and the methods of observational study. Previous discussions were on the level of review articles or separate chapters in monographs devoted to cosmic magnetic fields (see, e.g., H. K. Moffatt, 1978, E. N. Parker, 1979 and Zeldovich et aI., 1983).
This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, in degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.
Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial in the formation of the stars, and discuss promising experiments currently being designed to study some of the relevant physics in the laboratory. This interdisciplinary approach makes the book appealing to a wide audience in physics, astrophysics and geophysics.
This volume documents the theoretical and observational results and arguments in favour of (or against) the most preferred models of structure formation. New observational results of the large scale distribution of matter are confronted with recent theories on the origin and evolution of structure in the universe.