Large Language Models in Cybersecurity

Large Language Models in Cybersecurity

Author: Andrei Kucharavy

Publisher: Springer Nature

Published: 2024

Total Pages: 249

ISBN-13: 3031548272

DOWNLOAD EBOOK

This open access book provides cybersecurity practitioners with the knowledge needed to understand the risks of the increased availability of powerful large language models (LLMs) and how they can be mitigated. It attempts to outrun the malicious attackers by anticipating what they could do. It also alerts LLM developers to understand their work's risks for cybersecurity and provides them with tools to mitigate those risks. The book starts in Part I with a general introduction to LLMs and their main application areas. Part II collects a description of the most salient threats LLMs represent in cybersecurity, be they as tools for cybercriminals or as novel attack surfaces if integrated into existing software. Part III focuses on attempting to forecast the exposure and the development of technologies and science underpinning LLMs, as well as macro levers available to regulators to further cybersecurity in the age of LLMs. Eventually, in Part IV, mitigation techniques that should allowsafe and secure development and deployment of LLMs are presented. The book concludes with two final chapters in Part V, one speculating what a secure design and integration of LLMs from first principles would look like and the other presenting a summary of the duality of LLMs in cyber-security. This book represents the second in a series published by the Technology Monitoring (TM) team of the Cyber-Defence Campus. The first book entitled "Trends in Data Protection and Encryption Technologies" appeared in 2023. This book series provides technology and trend anticipation for government, industry, and academic decision-makers as well as technical experts.


Implications of Artificial Intelligence for Cybersecurity

Implications of Artificial Intelligence for Cybersecurity

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-01-27

Total Pages: 99

ISBN-13: 0309494508

DOWNLOAD EBOOK

In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity. The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.


Application of Large Language Models (LLMs) for Software Vulnerability Detection

Application of Large Language Models (LLMs) for Software Vulnerability Detection

Author: Omar, Marwan

Publisher: IGI Global

Published: 2024-11-01

Total Pages: 534

ISBN-13:

DOWNLOAD EBOOK

Large Language Models (LLMs) are redefining the landscape of cybersecurity, offering innovative methods for detecting software vulnerabilities. By applying advanced AI techniques to identify and predict weaknesses in software code, including zero-day exploits and complex malware, LLMs provide a proactive approach to securing digital environments. This integration of AI and cybersecurity presents new possibilities for enhancing software security measures. Application of Large Language Models (LLMs) for Software Vulnerability Detection offers a comprehensive exploration of this groundbreaking field. These chapters are designed to bridge the gap between AI research and practical application in cybersecurity, in order to provide valuable insights for researchers, AI specialists, software developers, and industry professionals. Through real-world examples and actionable strategies, the publication will drive innovation in vulnerability detection and set new standards for leveraging AI in cybersecurity.


Hands-On Machine Learning for Cybersecurity

Hands-On Machine Learning for Cybersecurity

Author: Soma Halder

Publisher: Packt Publishing Ltd

Published: 2018-12-31

Total Pages: 306

ISBN-13: 178899096X

DOWNLOAD EBOOK

Get into the world of smart data security using machine learning algorithms and Python libraries Key FeaturesLearn machine learning algorithms and cybersecurity fundamentalsAutomate your daily workflow by applying use cases to many facets of securityImplement smart machine learning solutions to detect various cybersecurity problemsBook Description Cyber threats today are one of the costliest losses that an organization can face. In this book, we use the most efficient tool to solve the big problems that exist in the cybersecurity domain. The book begins by giving you the basics of ML in cybersecurity using Python and its libraries. You will explore various ML domains (such as time series analysis and ensemble modeling) to get your foundations right. You will implement various examples such as building system to identify malicious URLs, and building a program to detect fraudulent emails and spam. Later, you will learn how to make effective use of K-means algorithm to develop a solution to detect and alert you to any malicious activity in the network. Also learn how to implement biometrics and fingerprint to validate whether the user is a legitimate user or not. Finally, you will see how we change the game with TensorFlow and learn how deep learning is effective for creating models and training systems What you will learnUse machine learning algorithms with complex datasets to implement cybersecurity conceptsImplement machine learning algorithms such as clustering, k-means, and Naive Bayes to solve real-world problemsLearn to speed up a system using Python libraries with NumPy, Scikit-learn, and CUDAUnderstand how to combat malware, detect spam, and fight financial fraud to mitigate cyber crimesUse TensorFlow in the cybersecurity domain and implement real-world examplesLearn how machine learning and Python can be used in complex cyber issuesWho this book is for This book is for the data scientists, machine learning developers, security researchers, and anyone keen to apply machine learning to up-skill computer security. Having some working knowledge of Python and being familiar with the basics of machine learning and cybersecurity fundamentals will help to get the most out of the book


Artificial Intelligence for Blockchain and Cybersecurity Powered IoT Applications

Artificial Intelligence for Blockchain and Cybersecurity Powered IoT Applications

Author: Mariya Ouaissa

Publisher: CRC Press

Published: 2025-01-16

Total Pages: 289

ISBN-13: 1040265146

DOWNLOAD EBOOK

The objective of this book is to showcase recent solutions and discuss the opportunities that AI, blockchain, and even their combinations can present to solve the issue of Internet of Things (IoT) security. It delves into cuttingedge technologies and methodologies, illustrating how these innovations can fortify IoT ecosystems against security threats. The discussion includes a comprehensive analysis of AI techniques such as machine learning and deep learning, which can detect and respond to security breaches in real time. The role of blockchain in ensuring data integrity, transparency, and tamper- proof transactions is also thoroughly examined. Furthermore, this book will present solutions that will help analyze complex patterns in user data and ultimately improve productivity.


Challenges in Large Language Model Development and AI Ethics

Challenges in Large Language Model Development and AI Ethics

Author: Gupta, Brij

Publisher: IGI Global

Published: 2024-08-15

Total Pages: 521

ISBN-13:

DOWNLOAD EBOOK

The development of large language models has resulted in artificial intelligence advancements promising transformations and benefits across various industries and sectors. However, this progress is not without its challenges. The scale and complexity of these models pose significant technical hurdles, including issues related to bias, transparency, and data privacy. As these models integrate into decision-making processes, ethical concerns about their societal impact, such as potential job displacement or harmful stereotype reinforcement, become more urgent. Addressing these challenges requires a collaborative effort from business owners, computer engineers, policymakers, and sociologists. Fostering effective research for solutions to address AI ethical challenges may ensure that large language model developments benefit society in a positive way. Challenges in Large Language Model Development and AI Ethics addresses complex ethical dilemmas and challenges of the development of large language models and artificial intelligence. It analyzes ethical considerations involved in the design and implementation of large language models, while exploring aspects like bias, accountability, privacy, and social impacts. This book covers topics such as law and policy, model architecture, and machine learning, and is a useful resource for computer engineers, sociologists, policymakers, business owners, academicians, researchers, and scientists.


Recent Advances in Next-Generation Data Science

Recent Advances in Next-Generation Data Science

Author: Henry Han (Computer scientist)

Publisher: Springer Nature

Published: 2024

Total Pages: 247

ISBN-13: 3031678710

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third Southwest Data Science Conference, on Recent advances in next-generation data science, SDSC 2024, held in Waco, TX, USA, in March 22, 2024. The 15 full papers presented were carefully reviewed and selected from 59 submissions. These papers focus on AI security in next-generation data science and address a range of challenges, from protecting sensitive data to mitigating adversarial threats.


Foundational Cybersecurity Research

Foundational Cybersecurity Research

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-08-24

Total Pages: 105

ISBN-13: 0309455294

DOWNLOAD EBOOK

Attaining meaningful cybersecurity presents a broad societal challenge. Its complexity and the range of systems and sectors in which it is needed mean that successful approaches are necessarily multifaceted. Moreover, cybersecurity is a dynamic process involving human attackers who continue to adapt. Despite considerable investments of resources and intellect, cybersecurity continues to poses serious challenges to national security, business performance, and public well-being. Modern developments in computation, storage and connectivity to the Internet have brought into even sharper focus the need for a better understanding of the overall security of the systems we depend on. Foundational Cybersecurity Research focuses on foundational research strategies for organizing people, technologies, and governance. These strategies seek to ensure the sustained support needed to create an agile, effective research community, with collaborative links across disciplines and between research and practice. This report is aimed primarily at the cybersecurity research community, but takes a broad view that efforts to improve foundational cybersecurity research will need to include many disciplines working together to achieve common goals.