Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Unstructured Grids

Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Unstructured Grids

Author: Kenneth E. Jansen

Publisher:

Published: 1999

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

Many flows of aeronautical interest have regions where turbulence has a significant effect. For many of these flows, Reynolds-averaged Navier-Stokes simulation (RANSS) techniques do not give an acceptable description of the flow. In these cases a more detailed simulation of the turbulence is required. One such detailed simulation technique, large-eddy simulation (LES) has matured to the point of application to complex flows. Historically, LES have been carried out with structured grids which suffer from two major difficulties: the extension to higher Reynolds numbers leads to an impractical number of grid points, and most real world flows are rather difficult to represent geometrically with structured grids. Unstructured-grid methods offer a release from both of these constraints. Within this sponsored research significant progress has been made towards the application of the above approach to flows of aeronautical interest.


Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Both Structured and Unstructured Grids

Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Both Structured and Unstructured Grids

Author:

Publisher:

Published: 1998

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This report describes the application of Large Eddy Simulations (LES) to turbulent flow over an airfoil. Two different approaches have been used, a second-order finite-difference solver on structured grid and a finite-element solver on unstructured grid. Results are presented for the flow around a NACA 4412 airfoil at maximum lift. The diversity of flow characteristics encountered in this flow include laminar, transitional and turbulent boundary layers, flow separation, unstable free shear layers and a wake. while Reynolds-averaged Navier-Stokes simulations (RANS) have had some success when tuned to flows dominated by one such flow characteristic, this variety of flow features taxes the presently available RANS models and presents an excellent opportunity to validate the utility of the dynamic SGS model for LES. Work has also been conducted on high order methods, both for the unstructured and the structured approach.


Flow Simulation with High-Performance Computers II

Flow Simulation with High-Performance Computers II

Author: Ernst Heinrich Hirschel

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 584

ISBN-13: 3322898490

DOWNLOAD EBOOK

Der Band enthält den Abschlußbericht des DFG-Schwerpunktprogramms "Flußsimulation mit Höchstleistungsrechnern". Es führt die Arbeiten fort, die schon als Band 38 in der Reihe "Notes on Numerical Fluid Mechanics" erschienen sind.Work is reported, which was sponsored by the Deutsche Forschungsgemeinschaft from 1993 to 1995. Scientists from numerical mathematics, fluid mechanics, aerodynamics, and turbomachinery present their work on flow simulation with massively parallel systems, on the direct and large-eddy simulation of turbulence, and on mathematical foundations, general solution techniques and applications. Results are reported from benchmark computations of laminar flow around a cylinder, in which seventeen groups participated.


Direct and Large-Eddy Simulation XI

Direct and Large-Eddy Simulation XI

Author: Maria Vittoria Salvetti

Publisher: Springer

Published: 2019-02-02

Total Pages: 562

ISBN-13: 3030049159

DOWNLOAD EBOOK

This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.


Large Eddy Simulation of Transonic Turbulent Flow Over an Airfoil Using a Shock Capturing Scheme with Zonal Embedded Mesh

Large Eddy Simulation of Transonic Turbulent Flow Over an Airfoil Using a Shock Capturing Scheme with Zonal Embedded Mesh

Author: Ichiro Nakamori

Publisher:

Published: 2001

Total Pages: 9

ISBN-13:

DOWNLOAD EBOOK

In this study, large eddy simulation(LES) of transonic flow around the NACA 0012 airfoil is performed accounting for the Leonard stress terms, the cross-stress terms and the subgrid-scale(SGS) Reynolds stress terms as the scale-similarity model at a free stream Mach number of 0.8, a Reynolds number of 9x10 (exp 6) and an angle of attack of 2.26 degrees. An upwind finite volume formulation is used for the discretization of compressible spatial-filtered Navier-Stokes equations. To exclude excessive numerical damping due to the shock-capturing scheme, a hybrid method which uses linear combination of the third order upwind scheme and the TVD scheme is employed. To reduce the total number of grid points, zonal embedded mesh is employed in the present LES analysis, in which a computational domain is decomposed near the wall-boundary. In the ease represented here, it is shown that the statistical values in the turbulent boundary layer with shock/turbulence interaction is able to be estimated, and characteristics are clarified on the statistic of the turbulence.


Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows

Author: P. A. Durbin

Publisher: Wiley-Blackwell

Published: 2001-03-12

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.


LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil

LESFOIL: Large Eddy Simulation of Flow Around a High Lift Airfoil

Author: Lars Davidson

Publisher: Springer Science & Business Media

Published: 2012-09-22

Total Pages: 246

ISBN-13: 3540364579

DOWNLOAD EBOOK

Large Eddy Simulation is a relatively new and still evolving computatio nal strategy for predicting turbulent flows. It is now widely used in research to elucidate fundamental interactions in physics of turbulence, to predict phe nomena which are closely linked to the unsteady features of turbulence and to create data bases against which statistical closure models can be asses sed. However, its applicability to complex industrial flows, to which statisti cal models are applied routinely, has not been established with any degree of confidence. There is, in particular, a question mark against the prospect of LES becoming an economically tenable alternative to Reynolds-averaged N avier-Stokes methods at practically high Reynolds numbers and in complex geometries. Aerospace flows pose particularly challenging problems to LES, because of the high Reynolds numbers involved, the need to resolve accura tely small-scale features in the thin and often transitional boundary layers developing on aerodynamic surfaces. When the flow also contains a separated region - due to high incidence, say - the range and disparity of the influen tial scales to be resolved is enormous, and this substantially aggravates the problems of resolution and cost. It is just this combination of circumstances that has been at the heart of the project LESFOIL to which this book is devoted. The project combined the efforts, resources and expertise of 9 partner organisations, 4 universities, 3 industrial companies and 2 research institu tes.


Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence

Author: M. Lesieur

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 240

ISBN-13: 9780521781244

DOWNLOAD EBOOK

Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.


Direct and Large Eddy Simulation XII

Direct and Large Eddy Simulation XII

Author: Manuel García-Villalba

Publisher: Springer Nature

Published: 2020-05-09

Total Pages: 478

ISBN-13: 3030428222

DOWNLOAD EBOOK

This book gathers the proceedings of the 12th instalment in the bi-annual Workshop series on Direct and Large Eddy Simulation (DLES), which began in 1994 and focuses on modern techniques used to simulate turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structure. With the rapidly expanding capacities of modern computers, this approach has attracted more and more interest over the years and will undoubtedly be further enhanced and applied in the future. Hybrid modelling techniques based on a combination of LES and RANS approaches also fall into this category and are covered as well. The goal of the Workshop was to share the state of the art in DNS, LES and related techniques for the computation and modelling of turbulent and transitional flows. The respective papers highlight the latest advances in the prediction, understanding and control of turbulent flows in academic and industrial applications.