Lanthanides and Actinides in Molecular Magnetism

Lanthanides and Actinides in Molecular Magnetism

Author: Richard A. Layfield

Publisher: John Wiley & Sons

Published: 2015-04-27

Total Pages: 366

ISBN-13: 3527335269

DOWNLOAD EBOOK

The first reference on this rapidly growing topic provides an essential up-to-date guide to current and emerging trends. A group of international experts has been carefully selected by the editors to cover all the central aspects, with a focus on molecular species while also including industrial applications. The resulting unique overview is a must-have for researchers, both in academia and industry, who are entering or already working in the field.


Lanthanides and Actinides in Molecular Magnetism

Lanthanides and Actinides in Molecular Magnetism

Author: Richard A. Layfield

Publisher: John Wiley & Sons

Published: 2015-01-20

Total Pages: 366

ISBN-13: 3527673490

DOWNLOAD EBOOK

The first reference on this rapidly growing topic provides an essential up-to-date guide to current and emerging trends. A group of international experts has been carefully selected by the editors to cover all the central aspects, with a focus on molecular species while also including industrial applications. The resulting unique overview is a must-have for researchers, both in academia and industry, who are entering or already working in the field.


Single-Molecule Magnets

Single-Molecule Magnets

Author: Malgorzata Holynska

Publisher: John Wiley & Sons

Published: 2019-02-11

Total Pages: 448

ISBN-13: 3527343210

DOWNLOAD EBOOK

Concise overview of synthesis and characterization of single molecule magnets Molecular magnetism is explored as an alternative to conventional solid-state magnetism as the basis for ultrahigh-density memory materials with extremely fast processing speeds. In particular single-molecule magnets (SMM) are in the focus of current research, both because of their intrinsic magnetization properties, as well as because of their potential use in molecular spintronic devices. SMMs are fascinating objects on the example of which one can explain many concepts. Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics starts with a general introduction to single-molecule magnets (SMM), which helps readers to understand the evolution of the field and its future. The following chapters deal with the current synthetic methods leading to SMMs, their magnetic properties and their characterization by methods such as high-field electron paramagnetic resonance, paramagnetic nuclear magnetic resonance, and magnetic circular dichroism. The book closes with an overview of radical-bridged SMMs, which have shown application potential as building blocks for high-density memories. Covers a hot topic ā€“ single-molecule magnetism is one of the fastest growing research fields in inorganic chemistry and materials science Provides researchers and newcomers to the field with a solid foundation for their further work Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics will appeal to inorganic chemists, materials scientists, molecular physicists, and electronics engineers interested in the rapidly growing field of study.


Lanthanide Single Molecule Magnets

Lanthanide Single Molecule Magnets

Author: Jinkui Tang

Publisher: Springer

Published: 2015-04-24

Total Pages: 219

ISBN-13: 3662469995

DOWNLOAD EBOOK

This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures ā€“ an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.


Molecular Magnetism

Molecular Magnetism

Author: Olivier Kahn

Publisher: Courier Dover Publications

Published: 2021-11-17

Total Pages: 419

ISBN-13: 0486837424

DOWNLOAD EBOOK

Highly regarded and historic book covers basic concepts of magnetization and magnetic susceptibility, establishes the fundamental equations of molecular magnetism, and examines molecules containing a unique magnetic center. 2019 edition.


Lanthanide-Based Multifunctional Materials

Lanthanide-Based Multifunctional Materials

Author:

Publisher: Elsevier

Published: 2018-06-26

Total Pages: 492

ISBN-13: 0128138416

DOWNLOAD EBOOK

Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs serves as a comprehensive and state-of the art review on these promising compounds, delivering a panorama of their extensive and rapidly growing applications. After an introductory chapter on the theoretical description of the optical and magnetic behaviour of lanthanides and on the prediction of their properties by ab-initio methods, four chapters are devoted to lanthanide-based OLEDs, including the latest trends in visible emitters, the emerging field of near infrared emitters and the first achievements attained in the field of chiral OLEDs. The use of lanthanide complexes as molecular magnets spreads over another two chapters, which explain the evolution of 4f-elements-based SIMs and the most recent advances in heterometallic 3dā€“4f SMMs. Other very active research areas are covered in the remaining five chapters, dedicated to lanthanide-doped germanate and tellurite glasses, luminescent materials for up-conversion, luminescent thermosensors, multimodal imaging and therapeutic agents, and chemosensors. The book is aimed at academic and industrial researchers, undergraduates and postgraduates alike, and is of particular interest for the Materials Science, Applied Physics and Applied Chemistry communities. - Includes the latest progress on lanthanide-based materials and their applications (in OLEDs, SIMs, doped matrices, up-conversion, thermosensors, theragnostics and chemosensors) - Presents basic and applied aspects of the Physics and Chemistry of lanthanide compounds, as well as future lines of action - Covers successful examples of devices and proofs-of-concept and provides guidelines for the rational design of new materials


Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials

Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials

Author: Zhiping Zheng

Publisher: Springer

Published: 2016-10-21

Total Pages: 343

ISBN-13: 3662533030

DOWNLOAD EBOOK

Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.


Molecular Magnetic Materials

Molecular Magnetic Materials

Author: Barbara Sieklucka

Publisher: John Wiley & Sons

Published: 2017-01-17

Total Pages: 508

ISBN-13: 3527339531

DOWNLOAD EBOOK

A comprehensive overview of this rapidly expanding interdisciplinary field of research. After a short introduction to the basics of magnetism and molecular magnetism, the text goes on to cover specific properties of molecular magnetic materials as well as their current and future applications. Design strategies for acquiring molecular magnetic materials with desired physical properties are discussed, as are such multifunctional materials as high Tc magnets, chiral and luminescent magnets, magnetic sponges as well as photo- and piezo-switching magnets. The result is an excellent resource for materials scientists, chemists, physicists and crystal engineers either entering or already working in the field.


Organometallic Magnets

Organometallic Magnets

Author: Vadapalli Chandrasekhar

Publisher: Springer Nature

Published: 2019-11-22

Total Pages: 422

ISBN-13: 3030260097

DOWNLOAD EBOOK

This volume highlights the recent advances and state of art in the experimental and theoretical studies of organometallic magnets. A plethora of organic ligands such as Mannich-base derivatives, redox-active chromophores, cyanides, Schiff base among others are used to coordinate to 3d transition metals, 4f lanthanides and 5f actinides to design the molecular magnets. Deep analysis of the coordination sphere symmetry, electronic distribution, luminescence are investigated to perform magneto-structural correlation leading to a better understanding of the magnetic properties. Furthermore, the rationalization of the magnetic behavior can be reached using ab initio calculations. The multiple applications that these molecular magnets offer could revolutionize the high-density data storage, spintronics and quantum computing technologies. This volume provides a discussion of these topics from leading international experts and will be a useful reference for researchers working in this field.