Completely revised and updated, Treatment Wetlands, Second Edition is still the most comprehensive resource available for the planning, design, and operation of wetland treatment systems. The book addresses the design, construction, and operation of wetlands for water pollution control. It presents the best current procedures for sizing these syste
This book presents new application processes in the context of anaerobic digestion (AD), such as phosphorus recovery, microbial fuel cells (MFCs), and seaweed digestion. In addition, it introduces a new technique for the modeling and optimization of AD processes. Chapters 1 and 2 review AD as a technique for converting a range of organic wastes into biogas, while Chapter 3 discusses the recovery of phosphorus from anaerobically digested liquor. Chapters 4 and 5 focus on new techniques for modeling and optimizing AD. Chapters 6 and 7 then describe the state of the art in AD effluent treatment. The book’s final three chapters focus on more recent developments, including microbial fuel cells (MFCs) (Chapter 8), seaweed production (Chapter 9), and enzyme technologies (Chapter 10).
Phytoremediation with wetland plants is an eco-friendly, aesthetically pleasing, cost-effective, solar-driven, passive technique that is useful for cleaning up environmental pollutants with low to moderate levels of contamination.
Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications provides a detailed overview of advanced water treatment methods involving membranes, which are increasingly seen as effective replacements for a range of conventional water treatment methods. The text begins with reviews of novel membrane materials and advances in membrane operations, then examines the processes involved with improving membrane performance. Final chapters cover the application of membrane technologies for use in water treatment, with detailed discussions on municipal wastewater and reuse in the textile and paper industries. - Provides a detailed overview of advanced water treatment methods involving membranes - Coverage includes advancements in membrane materials, improvement in membrane performance, and their applications in water treatment - Discusses the use of membrane technologies in the production of drinking water, desalination, wastewater treatment, and recovery
Pollution Control Technology for Leachate from Municipal Solid Waste explores the physical, chemical and biological factors that produce leachate and technological solutions for its control. The book introduces the integrated and pre-treatment leachate treatment processes that are necessary to deal with the variations of pollutants in leachate. Real world case-studies are provided to illustrate these treatment processes, along with leachate treatment engineering process design and the construction of municipal solid waste incinerator power plants. This book will be of particular interest to Civil, Chemical and Environmental Engineers, but will also be ideal for Environmental Scientists. - Provides quantity and quality prediction models, along with properties of effluent concentrated leachate liquid - Includes physical and chemical treatment processes for leachate, including ammonia nitrogen removal using struvite precipitation, crystal variation and microstructure of the struvite, etc. - Covers leachate treatment engineering processes for design and construction of treatment plants
Vertical flow constructed wetlands for wastewater and sludge treatment represent a relatively new and still growing technology. Vertical Flow Constructed Wetlands is the first book to present the state-of-the-art knowledge regarding vertical flow constructed wetlands theory and applications. In this book, you will learn about vertical flow systems with information about application and performance. Vertical Flow Constructed Wetlands also includes information on how different countries are applying the technology, with design guidelines to illustrate best practices worldwide. A focus on water conservation through reuse of treated water showcases the benefit of vertical flow construction, which has greatly increased the attractiveness of the technology in recent years. - All state-of-the-art knowledge regarding vertical flow constructed wetlands gathered in one book - A review of various constructed wetland approaches, including information about applications and performance, helps clarify what is currently known about constructed wetland principles and design - Discussion of how to manage the treated wastewater leaving the vertical flow for increasing biodiversity, providing food and habitat for birds, and producing harvestable biomass or crops - Includes case studies of constructed wetlands in developing countries
Solid Waste Landfilling: Concepts, Processes, Technology provides information on technologies that promote stabilization and minimize environmental impacts in landfills. As the main challenges in waste management are the reduction and proper treatment of waste and the appropriate use of waste streams, the book satisfies the needs of a modern landfill, covering waste pre-treatment, in situ treatment, long-term behavior, closure, aftercare, environmental impact and sustainability. It is written for practitioners who need specific information on landfill construction and operation, but is also ideal for those concerned about the possible return of these sites to landscapes and their subsequent uses for future generations. - Includes input by international contributors from a vast number of disciplines - Provides worldwide approaches and technologies - Showcases the interdisciplinary nature of the topic - Focuses on sustainability, covering the lifecycle of landfills under the concept of minimizing environmental impact - Presents knowledge of the legal framework and economic aspects of landfilling
Includes abstracts of the annual meetings of the American Society of Agronomy; Soil Science Society of America; Crop Science Society of America ( - of its Agronomic Education Division).
The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)