Land Allocation for Biomass Crops

Land Allocation for Biomass Crops

Author: Ruopu Li

Publisher: Springer

Published: 2018-05-04

Total Pages: 223

ISBN-13: 3319745360

DOWNLOAD EBOOK

This edited volume establishes a forum for international experts to explore cutting-edge questions associated with the land use and biomass production. Topics include ‘do we have enough land, either primary or marginal, to accommodate future production of biomass?’, ‘how are farming decisions made in response to biomass incentives?’, ‘is the current bio-mass production socially, economically and environmentally sustainable?’, and ‘what are the main constraints currently limiting biofuel deployment?’ The expansion of biomass production is often at the cost of reduced land availability for food production and losses of areas with ecological functions such as forests and wetlands. This process often involves complex interplay of physical dynamics and human systems that are driven by numerous geographic and socio-economic factors at different scales. Thus, the state-of-the-art research on the land use issues surrounding the biomass production and its environmental impacts is important for informed land management decision making. This book will be of great use to researchers in land use management and biomass-based renewable energy, as well as practitioners.


Land Allocation for Biomass Crops

Land Allocation for Biomass Crops

Author: Ruopu Li

Publisher:

Published: 2018

Total Pages: 217

ISBN-13: 9783319745374

DOWNLOAD EBOOK

This edited volume establishes a forum for international experts to explore cutting-edge questions associated with the land use and biomass production. Topics include 'do we have enough land, either primary or marginal, to accommodate future production of biomass?', 'how are farming decisions made in response to biomass incentives?', 'is the current bio-mass production socially, economically and environmentally sustainable?', and 'what are the main constraints currently limiting biofuel deployment?' The expansion of biomass production is often at the cost of reduced land availability for food production and losses of areas with ecological functions such as forests and wetlands. This process often involves complex interplay of physical dynamics and human systems that are driven by numerous geographic and socio-economic factors at different scales. Thus, the state-of-the-art research on the land use issues surrounding the biomass production and its environmental impacts is important for informed land management decision making. This book will be of great use to researchers in land use management and biomass-based renewable energy, as well as practitioners.


Selected Papers from 27th European Biomass Conference & Exhibition (EUBCE 2019)

Selected Papers from 27th European Biomass Conference & Exhibition (EUBCE 2019)

Author: David Baxter

Publisher: MDPI

Published: 2021-09-02

Total Pages: 264

ISBN-13: 303650804X

DOWNLOAD EBOOK

This book draws together a small selection of full-length papers based on presentations given at the 27th European Biomass Conference and Exhibition held in Lisbon, Portugal in 2019. The topics covered, which reflect the breadth of the program of the EUBCE conference itself, include biomass sources, various aspects of technologies used for the conversion of biomass to bioproducts and bioenergy, as well as different approaches to assessing environmental impacts, which include case studies based on different technologies in use in a range of countries.


Economic Analysis of Land Use in Global Climate Change Policy

Economic Analysis of Land Use in Global Climate Change Policy

Author: Thomas W. Hertel

Publisher: Routledge

Published: 2009-05-07

Total Pages: 364

ISBN-13: 1135978832

DOWNLOAD EBOOK

Land has long been overlooked in economics. That is now changing. A substantial part of the solution to the climate crisis may lie in growing crops for fuel and using trees for storing carbon. This book investigates the potential of these options to reduce greenhouse gas emissions, estimates the costs to the economy, and analyses the trade-offs with growing food. The first part presents new databases that are necessary to underpin policy-relevant research in the field of climate change while describing and critically assessing the underlying data, the methodologies used, and the first applications. Together, the new data and the extended models allow for a thorough and comprehensive analysis of a land use and climate policy. This book outlines key empirical and analytical issues associated with modelling land use and land use change in the context of global climate change policy. It places special emphasis on the economy-wide competition for land and other resources, especially; The implications of changes in land use for the cost of climate change mitigation, Land use change as a result of mitigation, and Feedback from changes in the global climate to land use. By offering synthesis and evaluation of a variety of different approaches to this challenging field of research, this book will serve as a key reference for future work in the economic analysis of land use and climate change policy.


Renewable Energy Production from Energy Crops and Agricultural Residues

Renewable Energy Production from Energy Crops and Agricultural Residues

Author: Luigi Pari

Publisher: MDPI

Published: 2021-03-04

Total Pages: 336

ISBN-13: 3036501061

DOWNLOAD EBOOK

Energies is open to submissions for a Special Issue on “Renewable Energy Production from Energy Crops and Agricultural Residues”. Biomass represents an important source of renewable and sustainable energy production. Its increasing consumption is mainly related to the increase in global energy demand and fossil fuel prices, but also to a lower environmental impact compared to non-renewable fuels. These factors take RED II directives into consideration. In the past, forestry interventions were the main supply source of biomass, but in recent decades two others sources have entered the international scene. These are dedicated energy crops and agricultural residues, which are important sources of biomass for biofuel and bioenergy. Below, we consider four main value chains: • Oil crops: Oil production from non-food oilseed crops (such as camelina, Crambe, safflower, castor, cuphea, cardoon, etc.), oil extraction, and oil utilization for fuel production. • Lignocellulosic crops: Biomass production from perennial grasses (miscanthus, giant reed, switchgrass, reed canary grass, etc.), woody crops (willow, poplar, Robinia, eucalyptus, etc.), and agricultural residues (pruning, maize cob, maize stalks, wheat chaff, sugar cane straw, etc.), considering two main transformation systems: 1. Electricity/heat production 2. Second-generation ethanol production • Carbohydrate crops (cereals, sweet sorghum, sugar beets, sugar cane, etc.) for ethanol production. • Fermentable crops (maize, barley, triticale, Sudan grass, sorghum, etc.) and agricultural residues (chaff, maize stalks and cob, fruit and vegetable waste, etc.) for production of biogas and/or biomethane.


Handbook of Bioenergy Crops

Handbook of Bioenergy Crops

Author: N. El Bassam

Publisher: Earthscan

Published: 2010

Total Pages: 545

ISBN-13: 1849774781

DOWNLOAD EBOOK

This completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.


Miscanthus for Bioenergy Production

Miscanthus for Bioenergy Production

Author: Michael B. Jones

Publisher: Routledge

Published: 2019-07-19

Total Pages: 135

ISBN-13: 135160922X

DOWNLOAD EBOOK

Miscanthus has been enthusiastically promoted as a second generation biomass crop, and this book provides a comprehensive review of this knowledge. Miscanthus, also known as elephant grass, is a high yielding grass crop that grows over three metres tall, resembles bamboo and produces a crop every year without the need for replanting or fertiliser application . The rapid growth, low mineral content, and high biomass yield of Miscanthus increasingly make it a favourite choice as a biofuel, outperforming switchgrass and other alternatives. There is over 20 years of research evidence to support its promotion as a second generation biomass crop. The author reviews many field measurements of yields as well as the physiology of the crop, and why it is so productive while at the same time requiring low inputs to grow it. It also shows how as a key biofuel crop it can contribute to mitigating climate change and how uptake of the adoption of Miscanthus production can be promoted, particularly in Europe and North America. The book will be key reading for students taking courses in the areas of Environmental Science and Engineering, Climate Change Impacts, Renewable Energy and Energy Conservation. It will also be of interest to researchers of second generation biomass crops, and policy developers working in biofuel production and utilization.


Alternative Protein Source For A Sustainable And Healthy Nutrition

Alternative Protein Source For A Sustainable And Healthy Nutrition

Author: Carla Cavallo

Publisher: Frontiers Media SA

Published: 2024-08-01

Total Pages: 153

ISBN-13: 2832552498

DOWNLOAD EBOOK

Global socioeconomic systems and climate change exacerbate disparities that leave a huge proportion of the human population malnourished. This condition will be further worsened by intensive food production like livestock that produces affordable protein but contribute to increasing greenhouse gases, making conventional food sources such as animal livestock unsustainable at global scales, in a vicious cycle. Thus, food systems have come under pressure to meet global food demands, whilst having to meet economic and ecological targets.