"Anyone interested in the life and work of Kurt Gödel, or in the history of mathematical logic in this century, is indebted to all of the contributors to this volume for the care with which they have presented Gödel's work. They have succeeded in using their own expertise to elucidate both the nature and significance of what Gödel and, in turn, mathematical logic have accomplished." --Isis (on volume I). The third volume brings togetherGödels unpublished essays and lectures.
Kurt Gödel (1906 - 1978) was the most outstanding logician of the twentieth century. These collected works form the only comprehensive edition of Gödel's work available and are designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy.
Kurt Gödel, together with Bertrand Russell, is the most important name in logic, and in the foundations and philosophy of mathematics of this century. However, unlike Russel, Gödel the mathematician published very little apart from his well-known writings in logic, metamathematics and set theory. Fortunately, Gödel the philosopher, who devoted more years of his life to philosophy than to technical investigation, wrote hundreds of pages on the philosophy of mathematics, as well as on other fields of philosophy. It was only possible to learn more about his philosophical works after the opening of his literary estate at Princeton a decade ago. The goal of this book is to make available to the scholarly public solid reconstructions and editions of two of the most important essays which Gödel wrote on the philosophy of mathematics. The book is divided into two parts. The first provides the reader with an incisive historico-philosophical introduction to Gödel's technical results and philosophical ideas. Written by the Editor, this introductory apparatus is not only devoted to the manuscripts themselves but also to the philosophical context in which they were written. The second contains two of Gödel's most important and fascinating unpublished essays: 1) the Gibbs Lecture ("Some basic theorems on the foundations of mathematics and their philosophical implications", 1951); and 2) two of the six versions of the essay which Gödel wrote for the Carnap volume of the Schilpp series The Library of Living Philosophers ("Is mathematics syntax of language?", 1953-1959).
This volume commemorates the life, work and foundational views of Kurt Gödel (1906–78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.
Newton/Descartes. Einstein/Gödel. The seventeenth century had its scientific and philosophical geniuses. Why shouldn't ours have them as well? Kurt Gödel was indisputably one of the greatest thinkers of our time, and in this first extended treatment of his life and work, Hao Wang, who was in close contact with Gödel in his last years, brings out the full subtlety of Gödel's ideas and their connection with grand themes in the history of mathematics and philosophy. The subjects he covers include the completeness of elementary logic, the limits of formalization, the problem of evidence, the concept of set, the philosophy of mathematics, time, and relativity theory, metaphysics and religion, as well as general ideas on philosophy as a worldview. Wang, whose reflections on his colleague also serve to clarify his own philosophical thoughts, distinguishes his ideas from those of Gödel's and on points of agreement develops Gödel's views further. The book provides a generous array of information on and interpretation of the two main phases of Gödel's career - the years between 1924 and 1939 at the University of Vienna, which were marked by intense mathematical creativity, and the period from 1940 to his death in 1978, during which he was affiliated with the Institute for Advanced Studies in Princeton, a time in which Gödel's interests steadily shifted from questions of logic to metaphysics. And it also examines Gödel's relations with the Vienna Circle, his philosophical differences with Carnap and Wittgenstein, the intimate and mutually fruitful friendship with Einstein, and the periodic bouts of depression for which Gödel was hospitalized a number of times over the course of his life. A Bradford Book.
Kurt Gödel (1906–1978) did groundbreaking work that transformed logic and other important aspects of our understanding of mathematics, especially his proof of the incompleteness of formalized arithmetic. This book on different aspects of his work and on subjects in which his ideas have contemporary resonance includes papers from a May 2006 symposium celebrating Gödel's centennial as well as papers from a 2004 symposium. Proof theory, set theory, philosophy of mathematics, and the editing of Gödel's writings are among the topics covered. Several chapters discuss his intellectual development and his relation to predecessors and contemporaries such as Hilbert, Carnap, and Herbrand. Others consider his views on justification in set theory in light of more recent work and contemporary echoes of his incompleteness theorems and the concept of constructible sets.
Kurt Gödel (1906 - 1978) was the most outstanding logician of the twentieth century. These collected works form the only comprehensive edition of Gödel's work available and are designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy.
The logician Kurt Godel in 1951 established a disjunctive thesis about the scope and limits of mathematical knowledge: either the mathematical mind is not equivalent to a Turing machine (i.e., a computer), or there are absolutely undecidable mathematical problems. In the second half of the twentieth century, attempts have been made to arrive at a stronger conclusion. In particular, arguments have been produced by the philosopher J.R. Lucas and by the physicist and mathematician Roger Penrose that intend to show that the mathematical mind is more powerful than any computer. These arguments, and counterarguments to them, have not convinced the logical and philosophical community. The reason for this is an insufficiency if rigour in the debate. The contributions in this volume move the debate forward by formulating rigorous frameworks and formally spelling out and evaluating arguments that bear on Godel's disjunction in these frameworks. The contributions in this volume have been written by world leading experts in the field.
It is a widely known but little considered fact that Albert Einstein and Kurt Godel were best friends for the last decade and a half of Einstein's life. The two walked home together from Princeton's Institute for Advanced Study every day; they shared ideas about physics, philosophy, politics, and the lost world of German science in which they had grown up. By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist . Einstein endorsed this result-reluctantly, since it decisively overthrew the classical world-view to which he was committed. But he could find no way to refute it, and in the half-century since then, neither has anyone else. Even more remarkable than this stunning discovery, however, was what happened afterward: nothing. Cosmologists and philosophers alike have proceeded with their work as if Godel's proof never existed -one of the greatest scandals of modern intellectual history. A World Without Time is a sweeping, ambitious book, and yet poignant and intimate. It tells the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue from undeserved obscurity the brilliant work they did together.