Knowledge Discovery in Big Data from Astronomy and Earth Observation

Knowledge Discovery in Big Data from Astronomy and Earth Observation

Author: Petr Skoda

Publisher: Elsevier

Published: 2020-04-10

Total Pages: 474

ISBN-13: 0128191554

DOWNLOAD EBOOK

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants. - Addresses both astronomy and geosciences in parallel, from a big data perspective - Includes introductory information, key principles, applications and the latest techniques - Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields


Knowledge Discovery in Big Data from Astronomy and Earth Observation

Knowledge Discovery in Big Data from Astronomy and Earth Observation

Author: Petr Skoda

Publisher: Elsevier

Published: 2020-04-09

Total Pages: 472

ISBN-13: 0128191546

DOWNLOAD EBOOK

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.


Intelligent Astrophysics

Intelligent Astrophysics

Author: Ivan Zelinka

Publisher: Springer Nature

Published: 2021-04-15

Total Pages: 300

ISBN-13: 3030658678

DOWNLOAD EBOOK

This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.


Advances and Trends in Artificial Intelligence. From Theory to Practice

Advances and Trends in Artificial Intelligence. From Theory to Practice

Author: Hamido Fujita

Publisher: Springer Nature

Published: 2021-07-19

Total Pages: 644

ISBN-13: 3030794636

DOWNLOAD EBOOK

This two-volume set of LNAI 12798 and 12799 constitutes the thoroughly refereed proceedings of the 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021, held virtually and in Kuala Lumpur, Malaysia, in July 2021. The 87 full papers and 19 short papers presented were carefully reviewed and selected from 145 submissions. The IEA/AIE 2021 conference will continue the tradition of emphasizing on applications of applied intelligent systems to solve real-life problems in all areas. These areas include the following: Part I, Artificial Intelligence Practices: Knowledge discovery and pattern mining; artificial intelligence and machine learning; sematic, topology, and ontology models; medical and health-related applications; graphic and social network analysis; signal and bioinformatics processing; evolutionary computation; attack security; natural language and text processing; fuzzy inference and theory; and sensor and communication networks Part II, From Theory to Practice: Prediction and recommendation; data management, clustering and classification; robotics; knowledge based and decision support systems; multimedia applications; innovative applications of intelligent systems; CPS and industrial applications; defect, anomaly and intrusion detection; financial and supply chain applications; Bayesian networks; BigData and time series processing; and information retrieval and relation extraction


Encyclopedia of Data Science and Machine Learning

Encyclopedia of Data Science and Machine Learning

Author: Wang, John

Publisher: IGI Global

Published: 2023-01-20

Total Pages: 3296

ISBN-13: 1799892212

DOWNLOAD EBOOK

Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.


XAI Based Intelligent Systems for Society 5.0

XAI Based Intelligent Systems for Society 5.0

Author: Fadi Al-Turjman

Publisher: Elsevier

Published: 2023-11-01

Total Pages: 428

ISBN-13: 0323957846

DOWNLOAD EBOOK

XAI Based Intelligent Systems for Society 5.0 focuses on the development and analysis of Explainable Artificial Intelligence (XAI)-based models and intelligent systems that can be utilized for Society 5.0—characterized by a knowledge intensive, data driven, and non-monetary society. The book delves into the issues of transparency, explainability, data fusion, and interpretability, which are significant for the development of a super smart society and are addressed through XAI-based models and techniques. XAI-based deep learning models, fuzzy and hybrid intelligent systems, expert systems, and intrinsic explainable models in the context of Society 5.0 are presented in detail. The book also addresses—using XAI-based intelligent techniques—the privacy issues intrinsic in storing huge amounts of data or information in virtual space. The concept of Responsible AI, which is at the core of the future direction of XAI for Society 5.0, is also explored in this book. Finally, the application areas of XAI, including relevant case studies, are presented in the concluding chapter. This book serves as a valuable resource for graduate/post graduate students, academicians, analysts, computer scientists, engineers, researchers, professionals, and other personnel working in the area of artificial intelligence, machine learning, and intelligent systems, who are interested in creating a people-centric smart society. Defines the basic terminology and concepts surrounding explainability and related topics to bring coherence to the field Focuses on what techniques are available to improve explainability and how explainability can progress society Offers a broad range of topics, addressing multiple facets of XAI within the context of Society 5.0


Handbook of Research on Emerging Trends and Technologies in Librarianship

Handbook of Research on Emerging Trends and Technologies in Librarianship

Author: Ekoja, Innocent Isa

Publisher: IGI Global

Published: 2022-01-07

Total Pages: 430

ISBN-13: 1799890961

DOWNLOAD EBOOK

A fundamental dynamism of the library is its continuous adoption of trending technologies and innovations for enhanced service delivery. To meet the needs of library users in the Fourth Industrial Revolution, an era characterized by digital revolution, knowledge economy, globalization, and information explosion, libraries have embraced innovations and novel technologies such as artificial intelligence, blockchain, social mediation tools, and the internet of things (IoT). The Handbook of Research on Emerging Trends and Technologies in Librarianship documents current research findings and theoretical studies focused on innovations and technologies used in contemporary libraries. This book provides relevant models, theoretical frameworks, the latest empirical research findings, and sound theoretical research regarding the use of novel technologies in libraries. Covering topics such as digital competitive advantage, smart governance, and social media, this book is an excellent resource for librarians, archivists, library associations and committees, researchers, academicians, students, faculty of higher education, computer scientists, programmers, and professionals.


Artificial Intelligence Applications for Sustainable Construction

Artificial Intelligence Applications for Sustainable Construction

Author: Moncef L. Nehdi

Publisher: Elsevier

Published: 2024-02-13

Total Pages: 440

ISBN-13: 0443131929

DOWNLOAD EBOOK

Artificial Intelligence Applications for Sustainable Construction presents the latest developments in AI and ML technologies applied to real-world civil engineering concerns. With an increasing amount of attention on the environmental impact of every industry, more construction projects are going to require sustainable construction practices. This volume offers research evidence, simulation results, and case studies to support this change. Sustainable construction, in fact, not only uses renewable and recyclable materials when building new structures or repairing deteriorating ones, but also adopts all possible methods to reduce energy consumption and waste. The concisely written but comprehensive, practical knowledge put forward by this international group of highly specialized editors and contributors will prove to be beneficial to engineering students and professionals alike. - Presents convincing "success stories that encourage application of AI-powered tools to civil engineering - Provides a wealth of valuable technical information to address and resolve many challenging construction problems - Illustrates the most recent shifts in thinking and practice for sustainable construction


Machine Learning Techniques and Industry Applications

Machine Learning Techniques and Industry Applications

Author: Srivastava, Pramod Kumar

Publisher: IGI Global

Published: 2024-04-16

Total Pages: 327

ISBN-13:

DOWNLOAD EBOOK

In today's rapidly evolving world, the exponential growth of data poses a significant challenge. As data volumes increase, traditional methods of analysis and decision-making become inadequate. This surge in data complexity calls for innovative solutions that efficiently extract meaningful insights. Machine learning has emerged as a powerful tool to address this challenge, offering algorithms and techniques to analyze large datasets and uncover hidden patterns, trends, and correlations. Machine Learning Techniques and Industry Applications demystifies machine learning through detailed explanations, examples, and case studies, making it accessible to a broad audience. Whether you're a student, researcher, or practitioner, this book equips you with the knowledge and skills needed to harness the power of machine learning to address diverse challenges. From e-government to healthcare, cyber-physical systems to agriculture, this book explores how machine learning can drive innovation and sustainable development.