Knowledge-Based Integrated Aircraft Design

Knowledge-Based Integrated Aircraft Design

Author: Raghu Chaitanya Munjulury

Publisher: Linköping University Electronic Press

Published: 2017-05-23

Total Pages: 101

ISBN-13: 9176855201

DOWNLOAD EBOOK

The design and development of new aircraft are becoming increasingly expensive and timeconsuming. To assist the design process in reducing the development cost, time, and late design changes, the conceptual design needs enhancement using new tools and methods. Integration of several disciplines in the conceptual design as one entity enables to keep the design process intact at every step and obtain a high understanding of the aircraft concepts at early stages. This thesis presents a Knowledge-Based Engineering (KBE) approach and integration of several disciplines in a holistic approach for use in aircraft conceptual design. KBE allows the reuse of obtained aircrafts’ data, information, and knowledge to gain more awareness and a better understanding of the concept under consideration at early stages of design. For this purpose, Knowledge-Based (KB) methodologies are investigated for enhanced geometrical representation and enable variable fidelity tools and Multidisciplinary Design Optimization (MDO). The geometry parameterization techniques are qualitative approaches that produce quantitative results in terms of both robustness and flexibility of the design parameterization. The information/parameters from all tools/disciplines and the design intent of the generated concepts are saved and shared via a central database. The integrated framework facilitates multi-fidelity analysis, combining low-fidelity models with high-fidelity models for a quick estimation, enabling a rapid analysis and enhancing the time for a MDO process. The geometry is further propagated to other disciplines [Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA)] for analysis. This is possible with an automated streamlined process (for CFD, FEM, system simulation) to analyze and increase knowledge early in the design process. Several processes were studied to streamline the geometry for CFD. Two working practices, one for parametric geometry and another for KB geometry are presented for automatic mesh generation. It is observed that analytical methods provide quicker weight estimation of the design and when coupled with KBE provide a better understanding. Integration of 1-D and 3-D models offers the best of both models: faster simulation, and superior geometrical representation. To validate both the framework and concepts generated from the tools, they are implemented in academia in several courses at Linköping University and in industry


Multidisciplinary Design Optimization Supported by Knowledge Based Engineering

Multidisciplinary Design Optimization Supported by Knowledge Based Engineering

Author: Jaroslaw Sobieszczanski-Sobieski

Publisher: John Wiley & Sons

Published: 2015-11-06

Total Pages: 412

ISBN-13: 1118897080

DOWNLOAD EBOOK

Multidisciplinary Design Optimization supported by Knowledge Based Engineering supports engineers confronting this daunting and new design paradigm. It describes methodology for conducting a system design in a systematic and rigorous manner that supports human creativity to optimize the design objective(s) subject to constraints and uncertainties. The material presented builds on decades of experience in Multidisciplinary Design Optimization (MDO) methods, progress in concurrent computing, and Knowledge Based Engineering (KBE) tools. Key features: Comprehensively covers MDO and is the only book to directly link this with KBE methods Provides a pathway through basic optimization methods to MDO methods Directly links design optimization methods to the massively concurrent computing technology Emphasizes real world engineering design practice in the application of optimization methods Multidisciplinary Design Optimization supported by Knowledge Based Engineering is a one-stop-shop guide to the state-of-the-art tools in the MDO and KBE disciplines for systems design engineers and managers. Graduate or post-graduate students can use it to support their design courses, and researchers or developers of computer-aided design methods will find it useful as a wide-ranging reference.


Advanced Aircraft Design

Advanced Aircraft Design

Author: Egbert Torenbeek

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 412

ISBN-13: 1118568095

DOWNLOAD EBOOK

Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.


Complex Systems Design & Management

Complex Systems Design & Management

Author: Omar Hammami

Publisher: Springer Science & Business Media

Published: 2012-01-11

Total Pages: 370

ISBN-13: 3642252036

DOWNLOAD EBOOK

This book contains all refereed papers that were accepted to the second edition of the « Complex Systems Design & Management » (CSDM 2011) international conference that took place in Paris (France) from December 7 to December 9, 2011. (Website: http://www.csdm2011.csdm.fr/). These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSDM 2011 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net/).


Stability and Control of Conventional and Unconventional Aerospace Vehicle Configurations

Stability and Control of Conventional and Unconventional Aerospace Vehicle Configurations

Author: Bernd Chudoba

Publisher: Springer

Published: 2019-07-23

Total Pages: 418

ISBN-13: 3030168565

DOWNLOAD EBOOK

This book introduces a stability and control methodology named AeroMech, capable of sizing the primary control effectors of fixed wing subsonic to hypersonic designs of conventional and unconventional configuration layout. Control power demands are harmonized with static-, dynamic-, and maneuver stability requirements, while taking the six-degree-of-freedom trim state into account. The stability and control analysis solves the static- and dynamic equations of motion combined with non-linear vortex lattice aerodynamics for analysis. The true complexity of addressing subsonic to hypersonic vehicle stability and control during the conceptual design phase is hidden in the objective to develop a generic (vehicle configuration independent) methodology concept. The inclusion of geometrically asymmetric aircraft layouts, in addition to the reasonably well-known symmetric aircraft types, contributes significantly to the overall technical complexity and level of abstraction. The first three chapters describe the preparatory work invested along with the research strategy devised, thereby placing strong emphasis on systematic and thorough knowledge utilization. The engineering-scientific method itself is derived throughout the second half of the book. This book offers a unique aerospace vehicle configuration independent (generic) methodology and mathematical algorithm. The approach satisfies the initial technical quest: How to develop a ‘configuration stability & control’ methodology module for an advanced multi-disciplinary aerospace vehicle design synthesis environment that permits consistent aerospace vehicle design evaluations?


Design Optimization of Unmanned Aerial Vehicles

Design Optimization of Unmanned Aerial Vehicles

Author: Athanasios Papageorgiou

Publisher: Linköping University Electronic Press

Published: 2019-11-13

Total Pages: 99

ISBN-13: 917519001X

DOWNLOAD EBOOK

Over the last years, Unmanned Aerial Vehicles (UAVs) have gradually become a more efficient alternative to manned aircraft, and at present, they are being deployed in a broad spectrum of both military as well as civilian missions. This has led to an unprecedented market expansion with new challenges for the aeronautical industry, and as a result, it has created a need to implement the latest design tools in order to achieve faster idea-to-market times and higher product performance. As a complex engineering product, UAVs are comprised of numerous sub-systems with intricate synergies and hidden dependencies. To this end, Multidisciplinary Design Optimization (MDO) is a method that can identify systems with better performance through the concurrent consideration of several engineering disciplines under a common framework. Nevertheless, there are still many limitations in MDO, and to this date, some of the most critical gaps can be found in the disciplinary modeling, in the analysis capabilities, and in the organizational integration of the method. As an aeronautical product, UAVs are also expected to work together with other systems and to perform in various operating environments. In this respect, System of Systems (SoS) models enable the exploration of design interactions in various missions, and hence, they allow decision makers to identify capabilities that are beyond those of each individual system. As expected, this significantly more complex formulation raises new challenges regarding the decomposition of the problem, while at the same time, it sets further requirements in terms of analyses and mission simulation. In this light, this thesis focuses on the design optimization of UAVs by enhancing the current MDO capabilities and by exploring the use of SoS models. Two literature reviews serve as the basis for identifying the gaps and trends in the field, and in turn, five case studies try to address them by proposing a set of expansions. On the whole, the problem is approached from a technical as well as an organizational point of view, and thus, this research aims to propose solutions that can lead to better performance and that are also meaningful to the Product Development Process (PDP). Having established the above foundation, this work delves firstly into MDO, and more specifically, it presents a framework that has been enhanced with further system models and analysis capabilities, efficient computing solutions, and data visualization tools. At a secondary level, this work addresses the topic of SoS, and in particular, it presents a multi-level decomposition strategy, multi-fidelity disciplinary models, and a mission simulation module. Overall, this thesis presents quantitative data which aim to illustrate the benefits of design optimization on the performance of UAVs, and it concludes with a qualitative assessment of the effects that the proposed methods and tools can have on both the PDP and the organization.


20th ISPE International Conference on Concurrent Engineering

20th ISPE International Conference on Concurrent Engineering

Author: C. Bil

Publisher: IOS Press

Published: 2013-09-12

Total Pages: 620

ISBN-13: 1614993025

DOWNLOAD EBOOK

As a concept, Concurrent Engineering (CE) initiates processes with the goal of improving product quality, production efficiency and overall customer satisfaction. Services are becoming increasingly important to the economy, with more than 60% of the GDP in Japan, the USA, Germany and Russia deriving from service-based activities. The definition of a product has evolved from the manufacturing and supplying of goods only, to providing goods with added value, to eventually promoting a complete service business solution, with support from introduction into service and from operations to decommissioning. This book presents the proceedings of the 20th ISPE International Conference on Concurrent Engineering, held in Melbourne, Australia, in September 2013. The conference had as its theme Product and Service Engineering in a Dynamic World, and the papers explore research results, new concepts and insights covering a number of topics, including service engineering, cloud computing and digital manufacturing, knowledge-based engineering and sustainability in concurrent engineering.


Advances in Integrated Design and Manufacturing in Mechanical Engineering

Advances in Integrated Design and Manufacturing in Mechanical Engineering

Author: Alan Bramley

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 439

ISBN-13: 1402034822

DOWNLOAD EBOOK

This book presents a selection of papers related to the fifth edition of book further to the International Conference on Integrated Design and Manufacturing in Mechanical Engineering. This Conference has been organized within the framework of the activities of the AIP-PRIMECA network whose main scientific field is Integrated Design applied to both Mechanical Engineering and Productics. This network isorganized along the lines of a joint project: the evolution, in the field of training of Integrated Design in Mechanics and Productics, in quite close connection with the ever changing industrial needs over the past 20 years. It is in charge of promoting both exchanges of experience and know-how capitalisation. It has a paramount mission to fulfil, be it in the field of initial and continuous education, technological transfer and knowledge dissemination through strong links with research labs. For the second time, in fact, the IDMME Conference has been held abroad and, after Canada in 2000, the United Kingdom, more particularly Bath University, has been retained under the responsibility of Professor Alan Bramley, the Chairman of the Scientific Committee of the conference. The Scientific Committee members have selected all the lectures from com mplete papers, which is the guarantee for the Conference of quite an outstanding scientific level. After that, a new selection hasbeen carried out to retain the best publications, which establish in a book, a state-of-the-art analysis as regards Integrated Design and Manufacturing in the discipline of Mechanical Engineering.