Knots and Applications

Knots and Applications

Author: Louis H. Kauffman

Publisher: World Scientific

Published: 1995

Total Pages: 502

ISBN-13: 9789810220044

DOWNLOAD EBOOK

This volume is a collection of research papers devoted to the study of relationships between knot theory and the foundations of mathematics, physics, chemistry, biology and psychology. Included are reprints of the work of Lord Kelvin (Sir William Thomson) on the 19th century theory of vortex atoms, reprints of modern papers on knotted flux in physics and in fluid dynamics and knotted wormholes in general relativity. It also includes papers on Witten's approach to knots via quantum field theory and applications of this approach to quantum gravity and the Ising model in three dimensions. Other papers discuss the topology of RNA folding in relation to invariants of graphs and Vassiliev invariants, the entanglement structures of polymers, the synthesis of molecular Mobius strips and knotted molecules. The book begins with an article on the applications of knot theory to the foundations of mathematics and ends with an article on topology and visual perception. This volume will be of immense interest to all workers interested in new possibilities in the uses of knots and knot theory.


The Knot Book

The Knot Book

Author: Colin Conrad Adams

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 330

ISBN-13: 0821836781

DOWNLOAD EBOOK

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.


The Mathematics of Knots

The Mathematics of Knots

Author: Markus Banagl

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 363

ISBN-13: 3642156371

DOWNLOAD EBOOK

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.


Knot Theory and Its Applications

Knot Theory and Its Applications

Author: Kunio Murasugi

Publisher: Springer Science & Business Media

Published: 2009-12-29

Total Pages: 348

ISBN-13: 0817647198

DOWNLOAD EBOOK

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.


History And Science Of Knots

History And Science Of Knots

Author: John C Turner

Publisher: World Scientific

Published: 1996-05-30

Total Pages: 463

ISBN-13: 9814499641

DOWNLOAD EBOOK

This book brings together twenty essays on diverse topics in the history and science of knots. It is divided into five parts, which deal respectively with knots in prehistory and antiquity, non-European traditions, working knots, the developing science of knots, and decorative and other aspects of knots.Its authors include archaeologists who write on knots found in digs of ancient sites (one describes the knots used by the recently discovered Ice Man); practical knotters who have studied the history and uses of knots at sea, for fishing and for various life support activities; a historian of lace; a computer scientist writing on computer classification of doilies; and mathematicians who describe the history of knot theories from the eighteenth century to the present day.In view of the explosion of mathematical theories of knots in the past decade, with consequential new and important scientific applications, this book is timely in setting down a brief, fragmentary history of mankind's oldest and most useful technical and decorative device — the knot.


Knots, Low-Dimensional Topology and Applications

Knots, Low-Dimensional Topology and Applications

Author: Colin C. Adams

Publisher: Springer

Published: 2019-06-26

Total Pages: 479

ISBN-13: 3030160319

DOWNLOAD EBOOK

This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.


Knots and Links

Knots and Links

Author: Peter R. Cromwell

Publisher: Cambridge University Press

Published: 2004-10-14

Total Pages: 356

ISBN-13: 9780521548311

DOWNLOAD EBOOK

A richly illustrated 2004 textbook on knot theory; minimal prerequisites but modern in style and content.


The Ultimate Hang

The Ultimate Hang

Author: Derek Hansen

Publisher: CreateSpace

Published: 2011-10-27

Total Pages: 129

ISBN-13: 9781466263680

DOWNLOAD EBOOK

Hammock camping--one of the most comfortable ways to enjoy a long-distance thru-hike, a weekend backpacking trip, or just an overnight in the woods. With more than 200 illustrations to guide you, this book helps you get off the ground to discover the freedom, comfort, and convenience of hammock camping. Learn how to set up and use a hammock to stay dry, warm, and bug free in a Leave No Trace-friendly way. This book covers hammock camping basics such as how to get a perfect hang and how to stay dry, warm, and bug free. Plus, it illustrates techniques and tips to get the most out of a hammock shelter, whether you have purchased an all-in-one kit or you've assembled your own customized system.


Introductory Lectures on Knot Theory

Introductory Lectures on Knot Theory

Author: Louis H. Kauffman

Publisher: World Scientific

Published: 2012

Total Pages: 577

ISBN-13: 9814313009

DOWNLOAD EBOOK

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.