Kinematics and Trajectory Synthesis of Manipulation Robots

Kinematics and Trajectory Synthesis of Manipulation Robots

Author: M. Vukobratovic

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 278

ISBN-13: 3642821952

DOWNLOAD EBOOK

A few words about the series "Scientific Fundamentals of Robotics" should be said on the occasion of publication of the present monograph. This six-volume series has been conceived so as to allow the readers to master a contemporary approach to the construction and synthesis of con trol for manipulation ~obots. The authors' idea was to show how to use correct mathematical models of the dynamics of active spatial mecha nisms for dynamic analysis of robotic systems, optimal design of their mechanical parts based on the accepted criteria and imposed constraints, optimal choice of actuators, synthesis of dynamic control algorithms and their microcomputer implementation. In authors' oppinion this idea has been relatively successfully realized within the six-volume mono graphic series. Let us remind the readers of the books of this series. Volumes 1 and 2 are devoted to the dynamics and control algorithms of manipulation ro bots, respectively. They form the first part of the series which has a certain topic-related autonomy in the domain of the construction and application of the mathematical models of robotic mechanisms' dynamics.


A Mathematical Introduction to Robotic Manipulation

A Mathematical Introduction to Robotic Manipulation

Author: Richard M. Murray

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 488

ISBN-13: 1351469789

DOWNLOAD EBOOK

A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.


Introduction to Robotics

Introduction to Robotics

Author: Miomir Vukobratovic

Publisher: Springer

Published: 1989

Total Pages: 366

ISBN-13:

DOWNLOAD EBOOK

This book provides a general introduction to robot technology with an emphasis on robot mechanisms and kinematics. It is conceived as a reference book for students in the field of robotics.


Advances in Robot Kinematics 2016

Advances in Robot Kinematics 2016

Author: Jadran Lenarčič

Publisher: Springer

Published: 2017-07-26

Total Pages: 447

ISBN-13: 3319568027

DOWNLOAD EBOOK

This book brings together 46 peer-reviewed papers that are of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. These papers cover the full range of robotic systems, including serial, parallel and cable-driven manipulators, both planar and spatial. The systems range from being less than fully mobile, to kinematically redundant, to over-constrained. In addition to these more familiar areas, the book also highlights recent advances in some emerging areas: such as the design and control of humanoids and humanoid subsystems; the analysis, modeling and simulation of human-body motions; mobility analyses of protein molecules; and the development of machines that incorporate man.


Non-Adaptive and Adaptive Control of Manipulation Robots

Non-Adaptive and Adaptive Control of Manipulation Robots

Author: M. Vukobratovic

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 394

ISBN-13: 3642822010

DOWNLOAD EBOOK

The material presented in this monograph is a logical continuation of research results achieved in the control of manipulation robots. This is in a way, a synthesis of many-year research efforts of the associates of Robotics Department, Mihailo Pupin Institute, in the field of dynamic control.of robotic systems. As in Vol. 2 of this Series, all results rely on the mathematical models of dynamics of active spatial mechanisms which offer the possibility for adequate dynamic control of manipula tion robots. Compared with Vol. 2, this monograph has three essential new character istics, and a variety of new tasks arising in the control of robots which have been formulated and solved for the first time. One of these novelties is nonadaptive control synthesized for the case of large variations in payload parameters, under the condition that the practical stability of the overall system is satisfied. Such a case of control synthesis meets the actual today's needs in industrial robot applications. The second characteristic of the monograph is the efficient adaptive control algorithm based on decentralized control structure intended for tasks in which parameter variations cannot be specified in advance. To be objective, this is not the case in industrial robotics today. Thus, nonadaptive control with and without a particular parameter variation is supplemented by adaptive dynamic control algorithms which will cer tainly be applicable in the future industrial practice when parametric identification of workpieces will be required.


Dynamics of Manipulation Robots

Dynamics of Manipulation Robots

Author: M. Vukobratovic

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 319

ISBN-13: 3642818544

DOWNLOAD EBOOK

This monograph represents the first book of the series entitled "SCI ENTIFIC FUNDAMENTALS OF ROBOTICS". The aim of this monograph is to ap proach the dynamics of active mechanisms from the standpoint of its application to the synthesis of complex motion and computer-aided de sign of manipulation mechanisms with some optimal performances. The rapid development of a new class of mechanisms, which may be referred to as active mechanisms, contributed to their application in various environments (from underwater to cosmic) . Because of some specific fea tures, these mechanisms require very careful description, both in a mechanical sense (kinematic and dynamic) and in the synthesis of algo rithms for precise tracking of the above motion under insufficiently defined operating conditions. Having also in mind the need for a very fast (even real-time) calculation of system dynamics and for eliminating, in principle, the errors made when forming mathematical models "by hand" this monograph will primarily present methods for automatic for mUlation of dynamic equations of motion of active spatial mechanisms. Apart from these computer-oriented methods, mention will be made of all those methods which have preceded the computer-oriented procedures, predominantly developed for different problems of rigid body dynamics. If we wish to systematically establish the origins of the scientific discipline, which could be called robot dynamics, we must recall some groups and individuals, who, by solving actual problems in the synthe sis and control of artificial motion, have contributed to a gradual formation of this discipline.


Advances in Robot Kinematics and Computational Geometry

Advances in Robot Kinematics and Computational Geometry

Author: Jadran Lenarčič

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 504

ISBN-13: 940158348X

DOWNLOAD EBOOK

Recently, research in robot kinematics has attracted researchers with different theoretical profiles and backgrounds, such as mechanical and electrica! engineering, computer science, and mathematics. It includes topics and problems that are typical for this area and cannot easily be met elsewhere. As a result, a specialised scientific community has developed concentrating its interest in a broad class of problems in this area and representing a conglomeration of disciplines including mechanics, theory of systems, algebra, and others. Usually, kinematics is referred to as the branch of mechanics which treats motion of a body without regard to the forces and moments that cause it. In robotics, kinematics studies the motion of robots for programming, control and design purposes. It deals with the spatial positions, orientations, velocities and accelerations of the robotic mechanisms and objects to be manipulated in a robot workspace. The objective is to find the most effective mathematical forms for mapping between various types of coordinate systems, methods to minimise the numerical complexity of algorithms for real-time control schemes, and to discover and visualise analytical tools for understanding and evaluation of motion properties ofvarious mechanisms used in a robotic system.