This substantially revised and updated classic reference offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The two volume Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in the book’s new chapters.
Substantially revising and updating the classic reference in the field, this handbook offers a valuable overview and myriad details on current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. The Handbook serves a spectrum of individuals, from those who are directly involved in the chemical industry to others in related industries and activities. It provides not only the underlying science and technology for important industry sectors, but also broad coverage of critical supporting topics. Industrial processes and products can be much enhanced through observing the tenets and applying the methodologies found in chapters on Green Engineering and Chemistry (specifically, biomass conversion), Practical Catalysis, and Environmental Measurements; as well as expanded treatment of Safety, chemistry plant security, and Emergency Preparedness. Understanding these factors allows them to be part of the total process and helps achieve optimum results in, for example, process development, review, and modification. Important topics in the energy field, namely nuclear, coal, natural gas, and petroleum, are covered in individual chapters. Other new chapters include energy conversion, energy storage, emerging nanoscience and technology. Updated sections include more material on biomass conversion, as well as three chapters covering biotechnology topics, namely, Industrial Biotechnology, Industrial Enzymes, and Industrial Production of Therapeutic Proteins.
The aim of this book is to present in a single volume an up-to-date account of the chemistry and chemical engineering which underlie the major areas of the chemical process industry. This most recent edition includes several new chapters which comprise important threads in the industry's total fabric. These new chapters cover waste minimization, safety considerations in chemical plant design and operation, emergency response planning, and statistical applications in quality control and experimental planning. Together with the chapters on chemical industry economics and wastewater treatment~ they provide a unifying base on which the reader can most effectively apply the information provided in the chapters which describe the various areas of the chemical process industries. The ninth edition of this established reference work contains the contributions of some fifty experts from industry, government, and academe. I have been humbled by the breadth and depth of their knowledge and expertise and by the willingness and enthusiasm with which they shared their knowledge and insights. They have, without exception, been unstinting in their efforts to make their respective chapters as complete and informative as possible within the space available. Errors of omission, duplication, and shortcomings in organization are mine. Grateful acknowledgment is made to the editors of technical journals and publishing houses for permission to reproduce illustrations and other materials and to the many industrial concerns which contributed drawings and photographs. Comments and criticisms by readers will be welcome.
Substantially revising and updating the information from the widely-used previous editions, this book offers a valuable overview of current chemical processes, products, and practices. No other source offers as much data on the chemistry, engineering, economics, and infrastructure of the industry. In addition to thoroughly revised material on chemical economics, safety, statistical control methods, and waste management, chapters on industrial cell culture and industrial fermentation expand the treatment of biochemical engineering. Sectors covered include: plastics, rubber, adhesives, textiles, pharmaceuticals, soap, coal, dyes, chlor-alkali, pigments, chemical explosives, petrochemicals, natural and industrial gas, synthetic nitrogen products, fats, sulfur, phosphorus, wood, and sweeteners. Comprehensive and easy to use, the tenth edition of Riegel's Handbook of Industrial Chemistry is an essential working tool for chemical and process engineers, chemists, plant and safety managers, and regulatory agency personnel.
This book discusses the connectivity between major chemicals, showing how a chemical is made along with why and some of the business considerations. The book helps smooth a student’s transition to industry and assists current professionals who need to understand the larger picture of industrial chemistry principles and practices. The book: Addresses a wide scope of content, emphasizing the business and polymer / pharmaceutical / agricultural aspects of industrial chemistry Covers patenting, experimental design, and systematic optimization of experiments Written by an author with extensive industrial experience but who is now a university professor, making him uniquely positioned to present this material Has problems at the end of chapters and a separate solution manual available for adopting professors Puts chemical industry topics in context and ties together many of the principles chemistry majors learn across more specific courses
Solving problems in chemical reaction engineering and kinetics is now easier than ever! As students read through this text, they'll find a comprehensive, introductory treatment of reactors for single-phase and multiphase systems that exposes them to a broad range of reactors and key design features. They'll gain valuable insight on reaction kinetics in relation to chemical reactor design. They will also utilize a special software package that helps them quickly solve systems of algebraic and differential equations, and perform parameter estimation, which gives them more time for analysis. Key Features Thorough coverage is provided on the relevant principles of kinetics in order to develop better designs of chemical reactors. E-Z Solve software, on CD-ROM, is included with the text. By utilizing this software, students can have more time to focus on the development of design models and on the interpretation of calculated results. The software also facilitates exploration and discussion of realistic, industrial design problems. More than 500 worked examples and end-of-chapter problems are included to help students learn how to apply the theory to solve design problems. A web site, www.wiley.com/college/missen, provides additional resources including sample files, demonstrations, and a description of the E-Z Solve software.
Survey of Industrial Chemistry arose from a need for a basic text dealing with industrial chemistry for use in a one semester, three-credit senior level course taught at the University of Wisconsin-Eau Claire. This edition covers all important areas of the chemical industry, yet it is reasonable that it can be covered in 40 hours of lecture. Also an excellent resource and reference for persons working in the chemical and related industries, it has sections on all important technologies used by these industries: a one-step source to answer most questions on practical, applied chemistry. Young scientists and engineers just entering the workforce will find it especially useful as a readily available handbook to prepare them for a type of chemistry quite different than they have seen in their traditional coursework, whether graduate or undergraduate.
DOWNSTREAM INDUSTRIAL BIOTECHNOLOGY An affordable, easily accessible desk reference on biomanufacturing, focused on downstream recovery and purification Advances in the fundamental knowledge surrounding biotechnology, novel materials, and advanced engineering approaches continue to be translated into bioprocesses that bring new products to market at a significantly faster pace than most other industries. Industrial scale biotechnology and new manufacturing methods are revolutionizing medicine, environmental monitoring and remediation, consumer products, food production, agriculture, and forestry, and continue to be a major area of research. The downstream stage in industrial biotechnology refers to recovery, isolation, and purification of the microbial products from cell debris, processing medium and contaminating biomolecules from the upstream process into a finished product such as biopharmaceuticals and vaccines. Downstream process design has the greatest impact on overall biomanufacturing cost because not only does the biochemistry of different products ( e.g., peptides, proteins, hormones, antibiotics, and complex antigens) dictate different methods for the isolation and purification of these products, but contaminating byproducts can also reduce overall process yield, and may have serious consequences on clinical safety and efficacy. Therefore downstream separation scientists and engineers are continually seeking to eliminate, or combine, unit operations to minimize the number of process steps in order to maximize product recovery at a specified concentration and purity. Based on Wiley’s Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, this volume features fifty articles that provide information on down- stream recovery of cells and protein capture; process development and facility design; equipment; PAT in downstream processes; downstream cGMP operations; and regulatory compliance. It covers: Cell wall disruption and lysis Cell recovery by centrifugation and filtration Large-scale protein chromatography Scale down of biopharmaceutical purification operations Lipopolysaccharide removal Porous media in biotechnology Equipment used in industrial protein purification Affinity chromatography Antibody purification, monoclonal and polyclonal Protein aggregation, precipitation and crystallization Freeze-drying of biopharmaceuticals Biopharmaceutical facility design and validation Pharmaceutical bioburden testing Regulatory requirements Ideal for graduate and advanced undergraduate courses on biomanufacturing, biochemical engineering, biopharmaceutical facility design, biochemistry, industrial microbiology, gene expression technology, and cell culture technology, Downstream Industrial Biotechnology is also a highly recommended resource for industry professionals and libraries.
Reverse engineering is widely practiced in the rubber industry. Companies routinely analyze competitors’ products to gather information about specifications or compositions. In a competitive market, introducing new products with better features and at a faster pace is critical for any manufacturer. Reverse Engineering of Rubber Products: Concepts, Tools, and Techniques explains the principles and science behind rubber formulation development by reverse engineering methods. The book describes the tools and analytical techniques used to discover which materials and processes were used to produce a particular vulcanized rubber compound from a combination of raw rubber, chemicals, and pigments. A Compendium of Chemical, Analytical, and Physical Test Methods Organized into five chapters, the book first reviews the construction of compounding ingredients and formulations, from elastomers, fillers, and protective agents to vulcanizing chemicals and processing aids. It then discusses chemical and analytical methods, including infrared spectroscopy, thermal analysis, chromatography, and microscopy. It also examines physical test methods for visco-elastic behavior, heat aging, hardness, and other features. A chapter presents important reverse engineering concepts. In addition, the book includes a wide variety of case studies of formula reconstruction, covering large products such as tires and belts as well as smaller products like seals and hoses. Get Practical Insights on Reverse Engineering from the Book’s Case Studies Combining scientific principles and practical advice, this book brings together helpful insights on reverse engineering in the rubber industry. It is an invaluable reference for scientists, engineers, and researchers who want to produce comparative benchmark information, discover formulations used throughout the industry, improve product performance, and shorten the product development cycle.
This book bridges the gap between theory and practice. It provides fundamental information on heterogeneous catalysis and the practicalities of the catalysts and processes used in producing ammonia, hydrogen and methanol via hydrocarbon steam reforming. It also covers the oxidation reactions in making formaldehyde from methanol, nitric acid from ammonia and sulphuric acid from sulphur dioxide. Designed for use in the chemical industry and by those in teaching, research and the study of industrial catalysts and catalytic processes. Students will also find this book extremely useful for obtaining practical information which is not available in more conventional textbooks.