KdV ’95

KdV ’95

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 507

ISBN-13: 9401100179

DOWNLOAD EBOOK

Exactly one hundred years ago, in 1895, G. de Vries, under the supervision of D. J. Korteweg, defended his thesis on what is now known as the Korteweg-de Vries Equation. They published a joint paper in 1895 in the Philosophical Magazine, entitled `On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave', and, for the next 60 years or so, no other relevant work seemed to have been done. In the 1960s, however, research on this and related equations exploded. There are now some 3100 papers in mathematics and physics that contain a mention of the phrase `Korteweg-de Vries equation' in their title or abstract, and there are thousands more in other areas, such as biology, chemistry, electronics, geology, oceanology, meteorology, etc. And, of course, the KdV equation is only one of what are now called (Liouville) completely integrable systems. The KdV and its relatives continually turn up in situations when one wishes to incorporate nonlinear and dispersive effects into wave-type phenomena. This centenary provides a unique occasion to survey as many different aspects of the KdV and related equations. The KdV equation has depth, subtlety, and a breadth of applications that make it a rarity deserving special attention and exposition.


Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday

Author: Helge Holden

Publisher: American Mathematical Soc.

Published: 2013-07-08

Total Pages: 409

ISBN-13: 0821875744

DOWNLOAD EBOOK

This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu


Integrable Systems and Algebraic Geometry

Integrable Systems and Algebraic Geometry

Author: Ron Donagi

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 421

ISBN-13: 1108715745

DOWNLOAD EBOOK

A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.


Integrable Systems and Algebraic Geometry: Volume 1

Integrable Systems and Algebraic Geometry: Volume 1

Author: Ron Donagi

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 421

ISBN-13: 110880358X

DOWNLOAD EBOOK

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. This first volume covers a wide range of areas related to integrable systems, often emphasizing the deep connections with algebraic geometry. Common themes include theta functions and Abelian varieties, Lax equations, integrable hierarchies, Hamiltonian flows and difference operators. These powerful tools are applied to spinning top, Hitchin, Painleve and many other notable special equations.


Integrable Systems and Algebraic Geometry: Volume 2

Integrable Systems and Algebraic Geometry: Volume 2

Author: Ron Donagi

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 537

ISBN-13: 1108805337

DOWNLOAD EBOOK

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.


Darboux Transformations in Integrable Systems

Darboux Transformations in Integrable Systems

Author: Chaohao Gu

Publisher: Springer Science & Business Media

Published: 2006-07-09

Total Pages: 317

ISBN-13: 1402030886

DOWNLOAD EBOOK

The Darboux transformation approach is one of the most effective methods for constructing explicit solutions of partial differential equations which are called integrable systems and play important roles in mechanics, physics and differential geometry. This book presents the Darboux transformations in matrix form and provides purely algebraic algorithms for constructing the explicit solutions. A basis for using symbolic computations to obtain the explicit exact solutions for many integrable systems is established. Moreover, the behavior of simple and multi-solutions, even in multi-dimensional cases, can be elucidated clearly. The method covers a series of important equations such as various kinds of AKNS systems in R1+n, harmonic maps from 2-dimensional manifolds, self-dual Yang-Mills fields and the generalizations to higher dimensional case, theory of line congruences in three dimensions or higher dimensional space etc. All these cases are explained in detail. This book contains many results that were obtained by the authors in the past few years. Audience: The book has been written for specialists, teachers and graduate students (or undergraduate students of higher grade) in mathematics and physics.


Partial Differential Equations and Inverse Problems

Partial Differential Equations and Inverse Problems

Author: Carlos Conca

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 426

ISBN-13: 0821834487

DOWNLOAD EBOOK

This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.


Questions About Elastic Waves

Questions About Elastic Waves

Author: Jüri Engelbrecht

Publisher: Springer

Published: 2015-03-05

Total Pages: 205

ISBN-13: 3319147919

DOWNLOAD EBOOK

This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.