Kalman Filtering and Neural Networks

Kalman Filtering and Neural Networks

Author: Simon Haykin

Publisher: John Wiley & Sons

Published: 2004-03-24

Total Pages: 302

ISBN-13: 047146421X

DOWNLOAD EBOOK

State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover: An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF) Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes The dual estimation problem Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm The unscented Kalman filter Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.


Discrete-Time High Order Neural Control

Discrete-Time High Order Neural Control

Author: Edgar N. Sanchez

Publisher: Springer

Published: 2008-06-24

Total Pages: 116

ISBN-13: 3540782893

DOWNLOAD EBOOK

Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.


Neural information processing [electronic resource]

Neural information processing [electronic resource]

Author: Nikil R. Pal

Publisher: Springer Science & Business Media

Published: 2004-11-18

Total Pages: 1397

ISBN-13: 3540239316

DOWNLOAD EBOOK

Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.


Cognitive Dynamic Systems

Cognitive Dynamic Systems

Author: Simon Haykin

Publisher: Cambridge University Press

Published: 2012-03-22

Total Pages: 323

ISBN-13: 0521114365

DOWNLOAD EBOOK

A groundbreaking book from Simon Haykin, setting out the fundamental ideas and highlighting a range of future research directions.


Artificial Neural Networks for Engineering Applications

Artificial Neural Networks for Engineering Applications

Author: Alma Y Alanis

Publisher: Academic Press

Published: 2019-02-13

Total Pages: 176

ISBN-13: 0128182474

DOWNLOAD EBOOK

Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.


Artificial Neural Network Applications in Business and Engineering

Artificial Neural Network Applications in Business and Engineering

Author: Do, Quang Hung

Publisher: IGI Global

Published: 2021-01-08

Total Pages: 275

ISBN-13: 1799832406

DOWNLOAD EBOOK

In today’s modernized market, various disciplines continue to search for universally functional technologies that improve upon traditional processes. Artificial neural networks are a set of statistical modeling tools that are capable of processing nonlinear data with strong accuracy. Due to their complexity, utilizing their potential was previously seen as a challenge. However, with the development of artificial intelligence, this technology has proven to be an effective and efficient problem-solving method. Artificial Neural Network Applications in Business and Engineering is an essential reference source that illustrates recent advancements of artificial neural networks in various professional fields, accompanied by specific case studies and practical examples. Featuring research on topics such as training algorithms, transportation, and computer security, this book is ideally designed for researchers, students, developers, managers, engineers, academicians, industrialists, policymakers, and educators seeking coverage on modern trends in artificial neural networks and their real-world implementations.


Kalman Filters

Kalman Filters

Author: Ginalber Luiz Serra

Publisher: BoD – Books on Demand

Published: 2018-02-21

Total Pages: 315

ISBN-13: 9535138278

DOWNLOAD EBOOK

This book presents recent issues on theory and practice of Kalman filters, with a comprehensive treatment of a selected number of concepts, techniques, and advanced applications. From an interdisciplinary point of view, the contents from each chapter bring together an international scientific community to discuss the state of the art on Kalman filter-based methodologies for adaptive/distributed filtering, optimal estimation, dynamic prediction, nonstationarity, robot navigation, global navigation satellite systems, moving object tracking, optical communication systems, and active power filters, among others. The theoretical and methodological foundations combined with extensive experimental explanation make this book a reference suitable for students, practicing engineers, and researchers in sciences and engineering.


Fuzzy Neural Networks for Real Time Control Applications

Fuzzy Neural Networks for Real Time Control Applications

Author: Erdal Kayacan

Publisher: Butterworth-Heinemann

Published: 2015-10-07

Total Pages: 266

ISBN-13: 0128027037

DOWNLOAD EBOOK

AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book