This volume covers the most up-to-date findings on string field theory. It is presented in a new approach as a result of insights gained from the theory. This includes the use of a universal method for treating free field theories, which allows the derivation of a single, simple, free, local, Poincare-invariant, gauge-invariant action that can be applied directly to any fields.
Describes the essence of the orbit method for non-experts and gives a detailed exposition of the method. This work can be used as a text for a graduate course, as well as a handbook for non-experts and a reference book for research mathematicians and mathematical physicists.
A collection of five surveys on dynamical systems, indispensable for graduate students and researchers in mathematics and theoretical physics. Written in the modern language of differential geometry, the book covers all the new differential geometric and Lie-algebraic methods currently used in the theory of integrable systems.
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm-Pines and Chern-Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law x(yz)=(xy)z. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29–August 5, 2017, at the University of Denver, Denver, Colorado. Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables. An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.
This is the proceedings of the 9th conference in this series. In addition to papers presented at the conference proper, it contains some papers delivered at Peter G Bergmann's 75th Birthday meeting (Capri, 24 Sept 1990). Among the subjects covered are cosmology and astrophysics, both theoretical and experimental.