Advanced Survival Models

Advanced Survival Models

Author: Catherine Legrand

Publisher: CRC Press

Published: 2021-03-22

Total Pages: 361

ISBN-13: 0429622554

DOWNLOAD EBOOK

Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.


A Distribution-Free Theory of Nonparametric Regression

A Distribution-Free Theory of Nonparametric Regression

Author: László Györfi

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 662

ISBN-13: 0387224424

DOWNLOAD EBOOK

This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates. The emphasis is on distribution-free properties of the estimates.


Modern Data Science with R

Modern Data Science with R

Author: Benjamin S. Baumer

Publisher: CRC Press

Published: 2021-03-31

Total Pages: 830

ISBN-13: 0429575394

DOWNLOAD EBOOK

From a review of the first edition: "Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics" (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice.


Reminiscences of a Statistician

Reminiscences of a Statistician

Author: Erich L. Lehmann

Publisher: Springer Science & Business Media

Published: 2007-12-26

Total Pages: 319

ISBN-13: 0387715975

DOWNLOAD EBOOK

This relatively nontechnical book is the first account of the history of statistics from the Fisher revolution to the computer revolution. It sketches the careers, and highlights some of the work, of 65 people, most of them statisticians. What gives the book its special character is its emphasis on the author's interaction with these people and the inclusion of many personal anecdotes. Combined, these portraits provide an amazing fly-on-the-wall view of statistics during the period in question. The stress is on ideas and technical material is held to a minimum. Thus the book is accessible to anyone with at least an elementary background in statistics.


Bayesian Statistics, A Review

Bayesian Statistics, A Review

Author: D. V. Lindley

Publisher: SIAM

Published: 1972-01-31

Total Pages: 88

ISBN-13: 9781611970654

DOWNLOAD EBOOK

A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics.


Applied Multivariate Statistics with R

Applied Multivariate Statistics with R

Author: Daniel Zelterman

Publisher: Springer Nature

Published: 2023-01-20

Total Pages: 469

ISBN-13: 3031130057

DOWNLOAD EBOOK

Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary. New to this edition are chapters devoted to longitudinal studies and the clustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.


A Career in Statistics

A Career in Statistics

Author: Gerald J. Hahn

Publisher: John Wiley & Sons

Published: 2012-08-29

Total Pages: 358

ISBN-13: 1118490134

DOWNLOAD EBOOK

A valuable guide to a successful career as a statistician A Career in Statistics: Beyond the Numbers prepares readers for careers in statistics by emphasizing essential concepts and practices beyond the technical tools provided in standard courses and texts. This insider's guide from internationally recognized applied statisticians helps readers decide whether a career in statistics is right for them, provides hands-on guidance on how to prepare for such a career, and shows how to succeed on the job. The book provides non-technical guidance for a successful career. The authors' extensive industrial experience is supplemented by insights from contributing authors from government and academia, Carol Joyce Blumberg, Leonard M. Gaines, Lynne B. Hare, William Q. Meeker, and Josef Schmee. Following an introductory chapter that provides an overview of the field, the authors discuss the various dimensions of a career in applied statistics in three succinct parts: The Work of a Statistician describes the day-to-day activities of applied statisticians in business and industry, official government, and various other application areas, highlighting the work environment and major on-the-job challenges Preparing for a Successful Career in Statistics describes the personal traits that characterize successful statisticians, the education that they need to acquire, and approaches for securing the right job Building a Successful Career as a Statistician offers practical guidance for addressing key challenges that statisticians face on the job, such as project initiation and execution, effective communication, publicizing successes, ethical considerations, and gathering good data; alternative career paths are also described The book concludes with an in-depth examination of careers for statisticians in academia as well as tips to help them stay on top of their field throughout their careers. Each chapter includes thought-provoking discussion questions and a Major Takeaways section that outlines key concepts. Real-world examples illustrate key points, and an FTP site provides additional information on selected topics. A Career in Statistics is an invaluable guide for individuals who are considering or have decided on a career in statistics as well as for statisticians already on the job who want to accelerate their path to success. It also serves as a suitable book for courses on statistical consulting, statistical practice, and statistics in the workplace at the undergraduate and graduate levels.