This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Provides a comprehensive introduction to the dynamic response of lattice materials, covering the fundamental theory and applications in engineering practice Offers comprehensive treatment of dynamics of lattice materials and periodic materials in general, including phononic crystals and elastic metamaterials Provides an in depth introduction to elastostatics and elastodynamics of lattice materials Covers advanced topics such as damping, nonlinearity, instability, impact and nanoscale systems Introduces contemporary concepts including pentamodes, local resonance and inertial amplification Includes chapters on fast computation and design optimization tools Topics are introduced using simple systems and generalized to more complex structures with a focus on dispersion characteristics
A man and his equation: the anxiety-plagued nineteenth-century physicist who contributed significantly to our understanding of the second law of thermodynamics. Ludwig Boltzmann's grave in Vienna's Central Cemetery bears a cryptic epitaph: S = k log W. This equation was Boltzmann's great discovery, and it contributed significantly to our understanding of the second law of thermodynamics. In Anxiety and the Equation, Eric Johnson tells the story of a man and his equation: the anxiety-plagued nineteenth-century physicist who did his most important work as he struggled with mental illness. Johnson explains that “S” in Boltzmann's equation refers to entropy, and that entropy is the central quantity in the second law of thermodynamics. The second law is always on, running in the background of our lives, providing a way to differentiate between past and future. We know that the future will be a state of higher entropy than the past, and we have Boltzmann to thank for discovering the equation that underlies that fundamental trend. Johnson, accessibly and engagingly, reassembles Boltzmann's equation from its various components and presents episodes from Boltzmann's life—beginning at the end, with “Boltzmann Kills Himself” and “Boltzmann Is Buried (Not Once, But Twice).” Johnson explains the second law in simple terms, introduces key concepts through thought experiments, and explores Boltzmann's work. He argues that Boltzmann, diagnosed by his contemporaries as neurasthenic, suffered from an anxiety disorder. He was, says Johnson, a man of reason who suffered from irrational concerns about his work, worrying especially about opposition from the scientific establishment of the day. Johnson's clear and concise explanations will acquaint the nonspecialist reader with such seemingly esoteric concepts as microstates, macrostates, fluctuations, the distribution of energy, log functions, and equilibrium. He describes Boltzmann's relationships with other scientists, including Max Planck and Henri Poincaré, and, finally, imagines “an alternative ending,” in which Boltzmann lived on and died of natural causes.
Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors.
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. Throughout the book, microscopic energy carriers are discussed, including photons, electrons and magnons. State-of-the-art computational and experimental nanoscale energy transport methods are reviewed, and a broad range of materials system topics are considered, from interfaces and molecular junctions to nanostructured bulk materials. Nanoscale Energy Transport is a valuable reference for researchers in physics, materials, mechanical and electrical engineering, and it provides an excellent resource for graduate students.
Everything you need to know to create Web sites using your Mac Create and deploy striking Web sites and apps on a Mac for your own business or for clients using the essential techniques in this focused guide. While most Web site how-tos are geared toward either designers or programmers, this detailed book covers both aspects, helping you develop the complete skill sets that you'll need professionally. Tap all of the out-of-the-box perks that Apple has to offer for Web development with these techniques and insights from a seasoned Mac Web developer. Takes you through everything that Macs have to offer for Web development, such as a Web server, PHP, and Ruby on Rails; Macs come with these right out of the box, making setting up a Web development environment pushbutton-easy Reveals the science and the artistry behind creating beautiful and intuitive Web pages using Apple technology Covers the technical elements of Web page construction with HTML, CSS, Javascript, PHP, and Rails; then goes beyond to show you how to add creative flair using Photoshop Turn your design and development skills into marketable assets with this essential guide for Apple users. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b