Steinberg Groups for Jordan Pairs

Steinberg Groups for Jordan Pairs

Author: Ottmar Loos

Publisher: Springer Nature

Published: 2020-01-10

Total Pages: 470

ISBN-13: 1071602640

DOWNLOAD EBOOK

The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems. The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory. Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.


Ring Theory And Algebraic Geometry

Ring Theory And Algebraic Geometry

Author: A. Granja

Publisher: CRC Press

Published: 2001-05-08

Total Pages: 366

ISBN-13: 9780203907962

DOWNLOAD EBOOK

Focuses on the interaction between algebra and algebraic geometry, including high-level research papers and surveys contributed by over 40 top specialists representing more than 15 countries worldwide. Describes abelian groups and lattices, algebras and binomial ideals, cones and fans, affine and projective algebraic varieties, simplicial and cellular complexes, polytopes, and arithmetics.


Partially Specified Matrices and Operators: Classification, Completion, Applications

Partially Specified Matrices and Operators: Classification, Completion, Applications

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 337

ISBN-13: 3034891008

DOWNLOAD EBOOK

This book is devoted to a new direction in linear algebra and operator theory that deals with the invariants of partially specified matrices and operators, and with the spectral analysis of their completions. The theory developed centers around two major problems concerning matrices of which part of the entries are given and the others are unspecified. The first is a classification problem and aims at a simplification of the given part with the help of admissible similarities. The results here may be seen as a far reaching generalization of the Jordan canonical form. The second problem is called the eigenvalue completion problem and asks to describe all possible eigenvalues and their multiplicities of the matrices which one obtains by filling in the unspecified entries. Both problems are also considered in an infinite dimensional operator framework. A large part of the book deals with applications to matrix theory and analysis, namely to stabilization problems in mathematical system theory, to problems of Wiener-Hopf factorization and interpolation for matrix polynomials and rational matrix functions, to the Kronecker structure theory of linear pencils, and to non everywhere defined operators. The eigenvalue completion problem has a natural associated inverse, which appears as a restriction problem. The analysis of these two problems is often simpler when a solution of the corresponding classification problem is available.


Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

Author: Jacob Greenstein

Publisher: Springer Nature

Published: 2022-03-11

Total Pages: 453

ISBN-13: 3030638499

DOWNLOAD EBOOK

This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.


Handbook of Linear Algebra

Handbook of Linear Algebra

Author: Leslie Hogben

Publisher: CRC Press

Published: 2013-11-26

Total Pages: 1906

ISBN-13: 1498785603

DOWNLOAD EBOOK

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and


The Mathematics of the Uncertain

The Mathematics of the Uncertain

Author: Eduardo Gil

Publisher: Springer

Published: 2018-02-28

Total Pages: 897

ISBN-13: 3319738488

DOWNLOAD EBOOK

This book is a tribute to Professor Pedro Gil, who created the Department of Statistics, OR and TM at the University of Oviedo, and a former President of the Spanish Society of Statistics and OR (SEIO). In more than eighty original contributions, it illustrates the extent to which Mathematics can help manage uncertainty, a factor that is inherent to real life. Today it goes without saying that, in order to model experiments and systems and to analyze related outcomes and data, it is necessary to consider formal ideas and develop scientific approaches and techniques for dealing with uncertainty. Mathematics is crucial in this endeavor, as this book demonstrates. As Professor Pedro Gil highlighted twenty years ago, there are several well-known mathematical branches for this purpose, including Mathematics of chance (Probability and Statistics), Mathematics of communication (Information Theory), and Mathematics of imprecision (Fuzzy Sets Theory and others). These branches often intertwine, since different sources of uncertainty can coexist, and they are not exhaustive. While most of the papers presented here address the three aforementioned fields, some hail from other Mathematical disciplines such as Operations Research; others, in turn, put the spotlight on real-world studies and applications. The intended audience of this book is mainly statisticians, mathematicians and computer scientists, but practitioners in these areas will certainly also find the book a very interesting read.


Matrix Polynomials

Matrix Polynomials

Author: I. Gohberg

Publisher: SIAM

Published: 2009-07-23

Total Pages: 423

ISBN-13: 0898716810

DOWNLOAD EBOOK

This book is the definitive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree. It has applications in many areas, such as differential equations, systems theory, the Wiener-Hopf technique, mechanics and vibrations, and numerical analysis. Although there have been significant advances in some quarters, this work remains the only systematic development of the theory of matrix polynomials. The book is appropriate for students, instructors, and researchers in linear algebra, operator theory, differential equations, systems theory, and numerical analysis. Its contents are accessible to readers who have had undergraduate-level courses in linear algebra and complex analysis.


Geometry of Digital Spaces

Geometry of Digital Spaces

Author: Gabor T. Herman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 221

ISBN-13: 1461241367

DOWNLOAD EBOOK

"La narraci6n literaria es la evocaci6n de las nostalgias. " ("Literary narration is the evocation of nostalgia. ") G. G. Marquez, interview in Puerta del Sol, VII, 4, 1996. A Personal Prehistory In 1972 I started cooperating with members of the Biodynamics Research Unit at the Mayo Clinic in Rochester, Minnesota, which was under the direction of Earl H. Wood. At that time, their ambitious (and eventually realized) dream was to build the Dynamic Spatial Reconstructor (DSR), a device capable of collecting data regarding the attenuation of X-rays through the human body fast enough for stop-action imaging the full extent of the beating heart inside the thorax. Such a device can be applied to study the dynamic processes of cardiopulmonary physiology, in a manner similar to the application of an ordinary cr (computerized tomography) scanner to observing stationary anatomy. The standard method of displaying the information produced by a cr scanner consists of showing two-dimensional images, corresponding to maps of the X-ray attenuation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in the body in those slices; bone - which attenuates X-rays a lot - appears white, air appears black, tumors typically appear less dark than the surrounding healthy tissue, etc. ) However, it seemed to me that this display mode would not be appropriate for the DSR.


Developments and Trends in Infinite-Dimensional Lie Theory

Developments and Trends in Infinite-Dimensional Lie Theory

Author: Karl-Hermann Neeb

Publisher: Springer Science & Business Media

Published: 2010-10-17

Total Pages: 492

ISBN-13: 0817647414

DOWNLOAD EBOOK

This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.