Jordan Canonical Form

Jordan Canonical Form

Author: Steven Weintraub

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 96

ISBN-13: 3031023986

DOWNLOAD EBOOK

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis


Matrix Theory

Matrix Theory

Author: Robert Piziak

Publisher: CRC Press

Published: 2007-02-22

Total Pages: 570

ISBN-13: 1584886250

DOWNLOAD EBOOK

In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.


The Mathematics of Frobenius in Context

The Mathematics of Frobenius in Context

Author: Thomas Hawkins

Publisher: Springer Science & Business Media

Published: 2013-07-23

Total Pages: 698

ISBN-13: 1461463335

DOWNLOAD EBOOK

Frobenius made many important contributions to mathematics in the latter part of the 19th century. Hawkins here focuses on his work in linear algebra and its relationship with the work of Burnside, Cartan, and Molien, and its extension by Schur and Brauer. He also discusses the Berlin school of mathematics and the guiding force of Weierstrass in that school, as well as the fundamental work of d'Alembert, Lagrange, and Laplace, and of Gauss, Eisenstein and Cayley that laid the groundwork for Frobenius's work in linear algebra. The book concludes with a discussion of Frobenius's contribution to the theory of stochastic matrices.


An Introduction to the Theory of Canonical Matrices

An Introduction to the Theory of Canonical Matrices

Author: H. W. Turnbull

Publisher: Courier Corporation

Published: 2014-03-05

Total Pages: 222

ISBN-13: 0486153460

DOWNLOAD EBOOK

Elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. 1952 edition. 275 problems.


Basic Algebra

Basic Algebra

Author: Anthony W. Knapp

Publisher: Springer Science & Business Media

Published: 2007-07-28

Total Pages: 762

ISBN-13: 0817645292

DOWNLOAD EBOOK

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.


Advanced Topics in Linear Algebra

Advanced Topics in Linear Algebra

Author: Kevin O'Meara

Publisher: OUP USA

Published: 2011-09-16

Total Pages: 423

ISBN-13: 0199793735

DOWNLOAD EBOOK

This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.


Matrix Analysis

Matrix Analysis

Author: Roger A. Horn

Publisher: Cambridge University Press

Published: 1990-02-23

Total Pages: 580

ISBN-13: 9780521386326

DOWNLOAD EBOOK

Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.


Linear Algebra and Matrices

Linear Algebra and Matrices

Author: Helene Shapiro

Publisher: American Mathematical Soc.

Published: 2015-10-08

Total Pages: 338

ISBN-13: 1470418525

DOWNLOAD EBOOK

Linear algebra and matrix theory are fundamental tools for almost every area of mathematics, both pure and applied. This book combines coverage of core topics with an introduction to some areas in which linear algebra plays a key role, for example, block designs, directed graphs, error correcting codes, and linear dynamical systems. Notable features include a discussion of the Weyr characteristic and Weyr canonical forms, and their relationship to the better-known Jordan canonical form; the use of block cyclic matrices and directed graphs to prove Frobenius's theorem on the structure of the eigenvalues of a nonnegative, irreducible matrix; and the inclusion of such combinatorial topics as BIBDs, Hadamard matrices, and strongly regular graphs. Also included are McCoy's theorem about matrices with property P, the Bruck-Ryser-Chowla theorem on the existence of block designs, and an introduction to Markov chains. This book is intended for those who are familiar with the linear algebra covered in a typical first course and are interested in learning more advanced results.