Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics

Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics

Author: Harald Upmeier

Publisher: American Mathematical Soc.

Published: 1987

Total Pages: 95

ISBN-13: 082180717X

DOWNLOAD EBOOK

Jordan algebras have found interesting applications in seemingly unrelated areas of mathematics such as operator theory, the foundations of quantum mechanics, complex analysis in finite and infinite dimensions, and harmonic analysis on homogeneous spaces. This book describes some relevant results and puts them in a general framework.


Linear Operators for Quantum Mechanics

Linear Operators for Quantum Mechanics

Author: Thomas F. Jordan

Publisher: Courier Corporation

Published: 2012-09-20

Total Pages: 162

ISBN-13: 0486140547

DOWNLOAD EBOOK

Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition.


Jordan Algebras

Jordan Algebras

Author: Wilhelm Kaup

Publisher: Walter de Gruyter

Published: 2011-05-02

Total Pages: 353

ISBN-13: 3110878119

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.


Geometric Analysis and Function Spaces

Geometric Analysis and Function Spaces

Author: Steven George Krantz

Publisher: American Mathematical Soc.

Published: 1993

Total Pages: 216

ISBN-13: 082180734X

DOWNLOAD EBOOK

This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.


Toeplitz Operators and Index Theory in Several Complex Variables

Toeplitz Operators and Index Theory in Several Complex Variables

Author: Harald Upmeier

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 495

ISBN-13: 3034892462

DOWNLOAD EBOOK

4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 In trod uction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations.


Topology, $C^*$-Algebras, and String Duality

Topology, $C^*$-Algebras, and String Duality

Author: Jonathan R_osenberg

Publisher: American Mathematical Soc.

Published: 2009-10-27

Total Pages: 122

ISBN-13: 0821849220

DOWNLOAD EBOOK

String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.


Lectures on Division Algebras

Lectures on Division Algebras

Author: David J. Saltman

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 130

ISBN-13: 0821809792

DOWNLOAD EBOOK

This volume is based on lectures on division algebras given at a conference held at Colorado State University. Although division algebras are a very classical object, this book presents this ""classical"" material in a new way, highlighting current approaches and new theorems, and illuminating the connections with a variety of areas in mathematics.


Introduction to Intersection Theory in Algebraic Geometry

Introduction to Intersection Theory in Algebraic Geometry

Author: William Fulton

Publisher: American Mathematical Soc.

Published: 1984

Total Pages: 98

ISBN-13: 0821807048

DOWNLOAD EBOOK

Introduces some of the main ideas of modern intersection theory, traces their origins in classical geometry and sketches a few typical applications. Suitable for graduate students in mathematics, this book describes the construction and computation of intersection products by means of the geometry of normal cones.