The Minnesota Notes on Jordan Algebras and Their Applications

The Minnesota Notes on Jordan Algebras and Their Applications

Author: Max Koecher

Publisher: Springer

Published: 2006-11-14

Total Pages: 180

ISBN-13: 3540484027

DOWNLOAD EBOOK

This volume contains a re-edition of Max Koecher's famous Minnesota Notes. The main objects are homogeneous, but not necessarily convex, cones. They are described in terms of Jordan algebras. The central point is a correspondence between semisimple real Jordan algebras and so-called omega-domains. This leads to a construction of half-spaces which give an essential part of all bounded symmetric domains. The theory is presented in a concise manner, with only elementary prerequisites. The editors have added notes on each chapter containing an account of the relevant developments of the theory since these notes were first written.


Structure and Representations of Jordan Algebras

Structure and Representations of Jordan Algebras

Author: Nathan Jacobson

Publisher: American Mathematical Soc.

Published: 1968-12-31

Total Pages: 464

ISBN-13: 082184640X

DOWNLOAD EBOOK

The theory of Jordan algebras has played important roles behind the scenes of several areas of mathematics. Jacobson's book has long been the definitive treatment of the subject. It covers foundational material, structure theory, and representation theory for Jordan algebras. Of course, there are immediate connections with Lie algebras, which Jacobson details in Chapter 8. Of particular continuing interest is the discussion of exceptional Jordan algebras, which serve to explain the exceptional Lie algebras and Lie groups. Jordan algebras originally arose in the attempts by Jordan, von Neumann, and Wigner to formulate the foundations of quantum mechanics. They are still useful and important in modern mathematical physics, as well as in Lie theory, geometry, and certain areas of analysis.


Banach Algebras and Their Applications

Banach Algebras and Their Applications

Author: Anthony To-Ming Lau

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 362

ISBN-13: 0821834711

DOWNLOAD EBOOK

This proceedings volume is from the international conference on Banach Algebras and Their Applications held at the University of Alberta (Edmonton). It contains a collection of refereed research papers and high-level expository articles that offer a panorama of Banach algebra theory and its manifold applications. Topics in the book range from - theory to abstract harmonic analysis to operator theory. It is suitable for graduate students and researchers interested in Banach algebras.


Geometry of State Spaces of Operator Algebras

Geometry of State Spaces of Operator Algebras

Author: Erik M. Alfsen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 1461200199

DOWNLOAD EBOOK

In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.


A Taste of Jordan Algebras

A Taste of Jordan Algebras

Author: Kevin McCrimmon

Publisher: Springer Science & Business Media

Published: 2006-05-29

Total Pages: 584

ISBN-13: 0387217967

DOWNLOAD EBOOK

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.


Topological Algebras and their Applications

Topological Algebras and their Applications

Author: Alexander Katz

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-05-07

Total Pages: 318

ISBN-13: 3110413558

DOWNLOAD EBOOK

Proceedings of the 8th International Conference of Topological Algebras and Their Applications (ICTAA-2014), held on May 26-30, 2014 in Playa de Villas de Mar Beach, dedicated to the memory of Anastasios Mallios (Athens, Greece). This series of conferences started in 1999 in Tartu, Estonia and were subsequently held in Rabat, Moroco (2000), Oulu, Finland (2001), Oaxaca, Mexico (2002), Bedlewo, Poland (2003), Athens, Greece (2005) and Tartu, Estonia (2008 and 2013). The topics of the conference include all areas of mathematics, connected with (preferably general) topological algebras and their applications, including all kinds of topological-algebraic structures as topological linear spaces, topological rings, topological modules, topological groups and semigroups; bornological-algebraic structures such as bornological linear spaces, bornological algebras, bornological groups, bornological rings and modules; algebraic and topological K-theory; topological module bundles, sheaves and others. Contents Some results on spectral properties of unital algebras and on the algebra of linear operators on a unital algebra Descriptions of all closed maximal one-sided ideals in topological algebras On non self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces Functional calculus on algebras of operators generated by a self-adjoint operator in Pontryagin space Π1 On Gelfand-Naimark type Theorems for unital abelian complex and real locally C*-, and locally JB-algebras Multipliers and strictly real topological algebras Multipliers in some perfect locally m-pseudo-convex algebras Wedderburn structure theorems for two-sided locally m-convex H*-algebras Homologically best modules in classical and quantized functional analysis Operator Grüss inequality Main embedding theorems for symmetric spaces of measurable functions Mapping class groups are linear Subnormable A-convex algebras Commutative BP*-algebras and Gelfand-Naimark’s theorem Discrete nonclosed subsets in maximally nondiscrete topological groups Faithfully representable topological *-algebras: some spectral properties On continuity of complementors in topological algebras Dominated ergodic theorem for isometries of non-commutative Lp-spaces, 1 p p ≠ 2 Ranks and the approximate n-th root property of C*-algebras Dense ideals in topological algebras: some results and open problems


Statistical Applications of Jordan Algebras

Statistical Applications of Jordan Algebras

Author: James D. Malley

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 110

ISBN-13: 1461226783

DOWNLOAD EBOOK

This monograph brings together my work in mathematical statistics as I have viewed it through the lens of Jordan algebras. Three technical domains are to be seen: applications to random quadratic forms (sums of squares), the investigation of algebraic simplifications of maxi mum likelihood estimation of patterned covariance matrices, and a more wide open mathematical exploration of the algebraic arena from which I have drawn the results used in the statistical problems just mentioned. Chapters 1, 2, and 4 present the statistical outcomes I have developed using the algebraic results that appear, for the most part, in Chapter 3. As a less daunting, yet quite efficient, point of entry into this material, one avoiding most of the abstract algebraic issues, the reader may use the first half of Chapter 4. Here I present a streamlined, but still fully rigorous, definition of a Jordan algebra (as it is used in that chapter) and its essential properties. These facts are then immediately applied to simplifying the M:-step of the EM algorithm for multivariate normal covariance matrix estimation, in the presence of linear constraints, and data missing completely at random. The results presented essentially resolve a practical statistical quest begun by Rubin and Szatrowski [1982], and continued, sometimes implicitly, by many others. After this, one could then return to Chapters 1 and 2 to see how I have attempted to generalize the work of Cochran, Rao, Mitra, and others, on important and useful properties of sums of squares.


Octonions, Jordan Algebras and Exceptional Groups

Octonions, Jordan Algebras and Exceptional Groups

Author: Tonny A. Springer

Publisher: Springer

Published: 2013-12-21

Total Pages: 212

ISBN-13: 3662126222

DOWNLOAD EBOOK

The 1963 Göttingen notes of T. A. Springer are well known in the field but have been unavailable for some time. This book is a translation of those notes, completely updated and revised. The part of the book dealing with the algebraic structures is on a fairly elementary level, presupposing basic results from algebra.


Non-Associative Algebra and Its Applications

Non-Associative Algebra and Its Applications

Author: Lev Sabinin

Publisher: CRC Press

Published: 2006-01-13

Total Pages: 553

ISBN-13: 1420003453

DOWNLOAD EBOOK

With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.


Evolution Algebras and Their Applications

Evolution Algebras and Their Applications

Author: Jianjun Paul Tian

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 136

ISBN-13: 3540742832

DOWNLOAD EBOOK

Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.