Joint Source-Channel Coding Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems
Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used for decoding convolutional codes, such as the list Viterbi decoding algorithm, can be applied directly on the trellis. The finite state machine interpretation can be easily migrated to Markov source case. We can encode Markov sources without considering the conditional probabilities, while using the list Viterbi decoding algorithm which utilizes the conditional probabilities. We can also use context-based arithmetic coding to exploit the conditional probabilities of the Markov source and apply a finite state machine interpretation to this problem. The finite state machine interpretation also allows us to more systematically understand arithmetic codes with forbidden symbols. It allows us to find the partial distance spectrum of arithmetic codes with forbidden symbols. We also propose arithmetic codes with memories which use high memory but low implementation precision arithmetic codes. The low implementation precision results in a state machine with less complexity. The introduced input memories allow us to switch the probability functions used for arithmetic coding. Combining these two methods give us a huge parameter space of the arithmetic codes with forbidden symbols. Hence we can choose codes with better distance properties while maintaining the encoding efficiency and decoding complexity. A construction and search method is proposed and simulation results show that we can achieve a similar performance as turbo codes when we apply this approach to rate 2/3 arithmetic codes. Table of Contents: Introduction / Arithmetic Codes / Arithmetic Codes with Forbidden Symbols / Distance Property and Code Construction / Conclusion
- Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. - Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks
This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation.The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation.Although Information Theory is not the main topic of the book — in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem — this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book./a
This book presents the benefits of the synergetic effect of the combination of coding and cryptography. It introduces new directions for the interoperability between the components of a communication system. Coding and cryptography are standard components in today’s distributed systems. The integration of cryptography into coding aspects is very interesting, as the usage of cryptography will be common use, even in industrial applications. The book is based on new developments of coding and cryptography, which use real numbers to express reliability values of bits instead of binary values 0 and 1. The presented methods are novel and designed for noisy communication, which doesn ́t allow the successful use of cryptography. The rate of successful verifications is improved essentially not only for standard or “hard” verification, but even more after the introduction of “soft” verification. A security analysis shows the impact on the security. Information security and cryptography follow the late developments of communication theory by changing from “hard” to “soft”, which results in much better results.
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.
This is an edited volume, written by well-recognized international researchers with extended chapter style versions of the best papers presented at the SITIS 2006 International Conference. This book presents the state-of-the-art and recent research results on the application of advanced signal processing techniques for improving the value of image and video data. It introduces new results on video coding on time-honored topic of securing image information. The book is designed for a professional audience composed of practitioners and researchers in industry. This book is also suitable for advanced-level students in computer science.
Pt. 1. Applications of coding theory to computational complexity. ch. 1. Linear complexity and related complexity measures / Arne Winterhof. ch. 2. Lattice and construction of high coding gain lattices from codes / Mohammd-Reza Sadeghi. ch. 3. Distributed space-time codes with low ML decoding complexity / G. Susinder Rajan and B. Sundar Rajan -- pt. 2. Methods of algebraic combinatorics in coding theory/codes construction and existence. ch. 4. Coding theory and algebraic combinatorics / Michael Huber. ch. 5. Block codes from matrix and group rings / Paul Hurley and Ted Hurley. ch. 6. LDPC and convolutional codes from matrix and group rings / Paul Hurley and Ted Hurley. ch. 7. Search for good linear codes in the class of quasi-cyclic and related codes / Nuh Aydin and Tsvetan Asamov -- pt. 3. Source coding/channel capacity/network coding. ch. 8. Applications of universal source coding to statistical analysis of time series / Boris Ryabko. ch. 9. Introduction to network coding for acyclic and cyclic networks / Ángela I. Barbero and Øyvind Ytrehus. ch. 10. Distributed joint source-channel coding on a multiple access channel / Vinod Sharma and R. Rajesh -- pt. 4. Other selected topics in information and coding theory. ch. 11. Low-density parity-check codes and the related performance analysis methods / Xudong Ma. ch. 12. Variable length codes and finite automata / Marie-Pierre Béal [und weitere]. ch. 13. Decoding and finding the minimum distance with Gröbner Bases : history and new insights / Stanislav Bulygin and Ruud Pellikaan. ch. 14. Cooperative diversity systems for wireless communication / Murat Uysal and Muhammad Mehboob Fareed. ch. 15. Public key cryptography and coding theory / Pascal Véron