Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications

Author: Emmanuel Peyre

Publisher: Springer Nature

Published: 2021-03-10

Total Pages: 469

ISBN-13: 3030575594

DOWNLOAD EBOOK

Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.


Arithmetic Algebraic Geometry

Arithmetic Algebraic Geometry

Author: Brian David Conrad

Publisher: American Mathematical Soc.

Published:

Total Pages: 588

ISBN-13: 9780821886915

DOWNLOAD EBOOK

The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.


Seminar on Fermat's Last Theorem

Seminar on Fermat's Last Theorem

Author: Vijaya Kumar Murty

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 278

ISBN-13: 0821803131

DOWNLOAD EBOOK

The most significant recent development in number theory is the work of Andrew Wiles on modular elliptic curves. Besides implying Fermat's Last Theorem, his work establishes a new reciprocity law. Reciprocity laws lie at the heart of number theory. Wiles' work draws on many of the tools of modern number theory and the purpose of this volume is to introduce readers to some of this background material. Based on a seminar held during 1993-1994 at the Fields Institute for Research in Mathematical Sciences, this book contains articles on elliptic curves, modular forms and modular curves, Serre's conjectures, Ribet's theorem, deformations of Galois representations, Euler systems, and annihilators of Selmer groups. All of the authors are well known in their field and have made significant contributions to the general area of elliptic curves, Galois representations, and modular forms. Features: Brings together a unique collection of number theoretic tools. Makes accessible the tools needed to understand one of the biggest breakthroughs in mathematics. Provides numerous references for further study.


Modular Forms and Fermat’s Last Theorem

Modular Forms and Fermat’s Last Theorem

Author: Gary Cornell

Publisher: Springer Science & Business Media

Published: 1997

Total Pages: 608

ISBN-13: 9780387946092

DOWNLOAD EBOOK

A collection of expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held at Boston University. The purpose of the conference, and indeed this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof, and to explain how his result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. The book begins with an overview of the complete proof, theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications.


Rational Points on Modular Elliptic Curves

Rational Points on Modular Elliptic Curves

Author: Henri Darmon

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 146

ISBN-13: 0821828681

DOWNLOAD EBOOK

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.