This proceedings volume contains papers on the main topics reflecting the scientific programme of the symposium: hierarchical, refined mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. In particular, peculiarities of cusped shells, plates, and beams are emphasized and special attention is paid to junction, multibody and fluid-elastic shell (plate, beam) interaction problems and their applications. The contributions are theoretical, practical, and numerical in character. This volume is dedicated to Ilia Vekua on the centenary of his birth.
This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:• comprehensive review of the most popular theories of plates and shells,• relations between three-dimensional theories and two-dimensional ones,• presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),• modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,• applications in modeling of non-classical objects like, for example, nanostructures,• presentation of actual numerical tools based on the finite element approach.
The book is devoted to an up-dated exploratory survey of results concerning elastic cusped shells, plates, and beams and cusped prismatic shell-fluid interaction problems. It contains some up to now non-published results as well. Mathematically the corresponding problems lead to non-classical, in general, boundary value and initial-boundary value problems for governing degenerate elliptic and hyperbolic systems in static and dynamical cases, respectively. Its uses two fundamentally different approaches of investigation: 1) to get results for two-dimensional and one-dimensional problems from results of the corresponding three-dimensional problems and 2) to investigate directly governing degenerate and singular systems of 2D and 1D problems. In both the cases, it is important to study relation of 2D and 1D problems to 3D problems.
The refined theory of beams, which takes into account both rotary inertia and shear deformation, was developed jointly by Timoshenko and Ehrenfest in the years 1911-1912. In over a century since the theory was first articulated, tens of thousands of studies have been performed utilizing this theory in various contexts. Likewise, the generalization of the Timoshenko-Ehrenfest beam theory to plates was given by Uflyand and Mindlin in the years 1948-1951.The importance of these theories stems from the fact that beams and plates are indispensable, and are often occurring elements of every civil, mechanical, ocean, and aerospace structure.Despite a long history and many papers, there is not a single book that summarizes these two celebrated theories. This book is dedicated to closing the existing gap within the literature. It also deals extensively with several controversial topics, namely those of priority, the so-called 'second spectrum' shear coefficient, and other issues, and shows vividly that the above beam and plate theories are unnecessarily overcomplicated.In the spirit of Einstein's dictum, 'Everything should be made as simple as possible but not simpler,' this book works to clarify both the Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories, and seeks to articulate everything in the simplest possible language, including their numerous applications.This book is addressed to graduate students, practicing engineers, researchers in their early career, and active scientists who may want to have a different look at the above theories, as well as readers at all levels of their academic or scientific career who want to know the history of the subject. The Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories are the key reference works in the study of stocky beams and thick plates that should be given their due and remain important for generations to come, since classical Bernoulli-Euler beam and Kirchhoff-Love theories are applicable for slender beams and thin plates, respectively.Related Link(s)
This book presents the various approaches in establishment the basic equations of one- and two-dimensional structural elements. In addition, the boundaries of validity of the theories and the estimation of errors in approximate theories are given. Many contributions contain not only new theories, but also new applications, which makes the book interesting for researcher and graduate students.
Composite materials are heterogeneous by nature, and are intended to be, since only the combination of different constituent materials can give them the desired combination of low weight, stiffness and strength. At present, the knowledge has advanced to a level that materials can be tailored to exhibit certain, required properties. At the same time, the fact that these materials are composed of various, sometimes very different constituents, make their mechanical behaviour complex. This observation holds with respect to the deformation behaviour, but especially with respect to the failure behaviour, where complicated and unconventional failure modes have been observed. It is a challenge to develop predictive methods that can capture this complex mechanical behaviour, either using analytical tools, or using numerical me- ods, the ?nite element method being the most widespread among the latter. In this respect, developments have gone fast over the past decade. Indeed, we have seen a paradigm shift in computational approaches to (composite) ma- rial behaviour. Where only a decade ago it was still customary to carry out analyses of deformation and failure at a macroscopic level of observation only – one may call this a phenomenological approach – nowadays this approach is being progressively replaced by multiscale methods. In such methods it is r- ognized a priori that the overall behaviour is highly dependent on local details and ?aws.
This book commemorates the 80th birthday of Prof. W. Pietraszkiewicz, a prominent specialist in the field of general shell theory. Reflecting Prof. Pietraszkiewicz’s focus, the respective papers address a range of current problems in the theory of shells. In addition, they present other structural mechanics problems involving dimension-reduced models. Lastly, several applications are discussed, including material models for such dimension-reduced structures.
A consistent theory for thin anisotropic layered structures is developed starting from asymptotic analysis of 3D equations in linear elasticity. The consideration is not restricted to the traditional boundary conditions along the faces of the structure expressed in terms of stresses, originating a new type of boundary value problems, which is not governed by the classical Kirchhoff-Love assumptions. More general boundary value problems, in particular related to elastic foundations are also studied.The general asymptotic approach is illustrated by a number of particular problems for elastic and thermoelastic beams and plates. For the latter, the validity of derived approximate theories is investigated by comparison with associated exact solution. The author also develops an asymptotic approach to dynamic analysis of layered media composed of thin layers motivated by modeling of engineering structures under seismic excitation.
This book presents a theoretical approach that allows the analysis of structures with magnetorheological and electrorheological layers, and shows, with the help of examples, how the mechanical behaviour of thin-walled laminated structures can be influenced. It consists of six chapters: Chapter 1 presents a brief overview of derivation approaches for theories of thin-walled structures, modelling of composites and modelling of laminated and sandwich structures. Chapter 2 describes the equivalent single layer model for thin laminated cylindrical shells, including the special cases of plates and beams. In addition to the classical mechanical properties, it also considers the electrorheological and magnetorheological properties. Chapter 3 presents the elastic buckling of laminated beams, plates, and cylindrical shells, discussing various problems, such as the influence of the boundary conditions, external loading and magnetic fields. It also suggests different approximations for asymptotic methods. Chapter 4 focuses on the free vibrations of elastic laminated beams, plates and cylindrical shells, investigating the influence of the boundary conditions and other factors. Chapter 5 presents the latest results concerning vibration of laminated structures composed of smart materials and discusses in detail the influence of electric and magnetic fields on smart structures. These results provide insights into the optimal design of these structures. Lastly, Chapter 6 features a short appendix presenting asymptotic estimates and series.