Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Author: Barbara Kaltenbacher

Publisher: Walter de Gruyter

Published: 2008-09-25

Total Pages: 205

ISBN-13: 311020827X

DOWNLOAD EBOOK

Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.


Regularization Algorithms for Ill-Posed Problems

Regularization Algorithms for Ill-Posed Problems

Author: Anatoly B. Bakushinsky

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-02-05

Total Pages: 447

ISBN-13: 3110556383

DOWNLOAD EBOOK

This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems


Iterative Methods for Ill-Posed Problems

Iterative Methods for Ill-Posed Problems

Author: Anatoly B. Bakushinsky

Publisher: Walter de Gruyter

Published: 2010-12-23

Total Pages: 153

ISBN-13: 3110250659

DOWNLOAD EBOOK

Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.


Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 1626

ISBN-13: 0387929193

DOWNLOAD EBOOK

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.


Numerical Regularization for Atmospheric Inverse Problems

Numerical Regularization for Atmospheric Inverse Problems

Author: Adrian Doicu

Publisher: Springer Science & Business Media

Published: 2010-07-16

Total Pages: 432

ISBN-13: 3642054390

DOWNLOAD EBOOK

The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.


Iterative Methods for Approximate Solution of Inverse Problems

Iterative Methods for Approximate Solution of Inverse Problems

Author: A.B. Bakushinsky

Publisher: Springer Science & Business Media

Published: 2007-09-28

Total Pages: 298

ISBN-13: 140203122X

DOWNLOAD EBOOK

This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.


Iterative Methods and Their Dynamics with Applications

Iterative Methods and Their Dynamics with Applications

Author: Ioannis Konstantinos Argyros

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 301

ISBN-13: 1351649507

DOWNLOAD EBOOK

Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.


Computational Methods in Nonlinear Analysis

Computational Methods in Nonlinear Analysis

Author: Ioannis K. Argyros

Publisher: World Scientific

Published: 2013

Total Pages: 592

ISBN-13: 9814405833

DOWNLOAD EBOOK

The field of computational sciences has seen a considerable development in mathematics, engineering sciences, and economic equilibrium theory. Researchers in this field are faced with the problem of solving a variety of equations or variational inequalities. We note that in computational sciences, the practice of numerical analysis for finding such solutions is essentially connected to variants of Newton's method. The efficient computational methods for finding the solutions of fixed point problems, nonlinear equations and variational inclusions are the first goal of the present book. The second goal is the applications of these methods in nonlinear problems and the connection with fixed point theory. This book is intended for researchers in computational sciences, and as a reference book for an advanced computational methods in nonlinear analysis. We collect the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces, and present several applications and connections with fixed point theory. The book contains abundant and updated bibliography, and provides comparison between various investigations made in recent years in the field of computational nonlinear analysis.


Regularization Methods in Banach Spaces

Regularization Methods in Banach Spaces

Author: Thomas Schuster

Publisher: Walter de Gruyter

Published: 2012-07-30

Total Pages: 296

ISBN-13: 3110255723

DOWNLOAD EBOOK

Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.