Linear and Nonlinear Iterative Learning Control

Linear and Nonlinear Iterative Learning Control

Author: Jian-Xin Xu

Publisher: Springer

Published: 2003-09-04

Total Pages: 177

ISBN-13: 3540448454

DOWNLOAD EBOOK

This monograph summarizes the recent achievements made in the field of iterative learning control. The book is self-contained in theoretical analysis and can be used as a reference or textbook for a graduate level course as well as for self-study. It opens a new avenue towards a new paradigm in deterministic learning control theory accompanied by detailed examples.


Iterative Learning Control for Deterministic Systems

Iterative Learning Control for Deterministic Systems

Author: Kevin L. Moore

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 158

ISBN-13: 1447119126

DOWNLOAD EBOOK

The material presented in this book addresses the analysis and design of learning control systems. It begins with an introduction to the concept of learning control, including a comprehensive literature review. The text follows with a complete and unifying analysis of the learning control problem for linear LTI systems using a system-theoretic approach which offers insight into the nature of the solution of the learning control problem. Additionally, several design methods are given for LTI learning control, incorporating a technique based on parameter estimation and a one-step learning control algorithm for finite-horizon problems. Further chapters focus upon learning control for deterministic nonlinear systems, and a time-varying learning controller is presented which can be applied to a class of nonlinear systems, including the models of typical robotic manipulators. The book concludes with the application of artificial neural networks to the learning control problem. Three specific ways to neural nets for this purpose are discussed, including two methods which use backpropagation training and reinforcement learning. The appendices in the book are particularly useful because they serve as a tutorial on artificial neural networks.


Iterative Learning Control

Iterative Learning Control

Author: Zeungnam Bien

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 384

ISBN-13: 1461556295

DOWNLOAD EBOOK

Iterative Learning Control (ILC) differs from most existing control methods in the sense that, it exploits every possibility to incorporate past control informa tion, such as tracking errors and control input signals, into the construction of the present control action. There are two phases in Iterative Learning Control: first the long term memory components are used to store past control infor mation, then the stored control information is fused in a certain manner so as to ensure that the system meets control specifications such as convergence, robustness, etc. It is worth pointing out that, those control specifications may not be easily satisfied by other control methods as they require more prior knowledge of the process in the stage of the controller design. ILC requires much less information of the system variations to yield the desired dynamic be haviors. Due to its simplicity and effectiveness, ILC has received considerable attention and applications in many areas for the past one and half decades. Most contributions have been focused on developing new ILC algorithms with property analysis. Since 1992, the research in ILC has progressed by leaps and bounds. On one hand, substantial work has been conducted and reported in the core area of developing and analyzing new ILC algorithms. On the other hand, researchers have realized that integration of ILC with other control techniques may give rise to better controllers that exhibit desired performance which is impossible by any individual approach.


Iterative Learning Control

Iterative Learning Control

Author: David H. Owens

Publisher: Springer

Published: 2015-10-31

Total Pages: 473

ISBN-13: 1447167724

DOWNLOAD EBOOK

This book develops a coherent and quite general theoretical approach to algorithm design for iterative learning control based on the use of operator representations and quadratic optimization concepts including the related ideas of inverse model control and gradient-based design. Using detailed examples taken from linear, discrete and continuous-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately as their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates the underlying robustness of the paradigm and also includes new control laws that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference and auxiliary signals and also to support new properties such as spectral annihilation. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes.


Iterative Learning Control

Iterative Learning Control

Author: Yangquan Chen

Publisher: Springer

Published: 2007-10-03

Total Pages: 0

ISBN-13: 1846285399

DOWNLOAD EBOOK

This book provides readers with a comprehensive coverage of iterative learning control. The book can be used as a text or reference for a course at graduate level and is also suitable for self-study and for industry-oriented courses of continuing education. Ranging from aerodynamic curve identification robotics to functional neuromuscular stimulation, Iterative Learning Control (ILC), started in the early 80s, is found to have wide applications in practice. Generally, a system under control may have uncertainties in its dynamic model and its environment. One attractive point in ILC lies in the utilisation of the system repetitiveness to reduce such uncertainties and in turn to improve the control performance by operating the system repeatedly. This monograph emphasises both theoretical and practical aspects of ILC. It provides some recent developments in ILC convergence and robustness analysis. The book also considers issues in ILC design. Several practical applications are presented to illustrate the effectiveness of ILC. The applied examples provided in this monograph are particularly beneficial to readers who wish to capitalise the system repetitiveness to improve system control performance.


Real-time Iterative Learning Control

Real-time Iterative Learning Control

Author: Jian-Xin Xu

Publisher: Springer Science & Business Media

Published: 2008-12-12

Total Pages: 204

ISBN-13: 1848821751

DOWNLOAD EBOOK

Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.


Iterative Learning Control for Nonlinear Time-Delay System

Iterative Learning Control for Nonlinear Time-Delay System

Author: Jianming Wei

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 185

ISBN-13: 9811963177

DOWNLOAD EBOOK

This book focuses on adaptive iterative learning control problem for nonlinear time-delay systems.A universal adaptive learning control scheme is provided for a wide classes of nonlinear systems with time-varying delay and input nonlinearity. Proceeding from easy to difficult, this book deals with the adaptive iterative learning control problems for parameterized nonlinear time-delay systems, non-parameterized nonlinear time-delay systems, nonlinear time-delay systems with unknown control direction and nonlinear time-delay systems with un-measurable states. The proposed control schemes can be extended to the adaptive learning control problem for wider classes of nonlinear systems revelent to abovementioned nonlinear systems.The topics presented in this book are research hot spots of iterative learning control. This book will be a valuable reference for researchers and students working or studying in this area.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLABĀ®.


Adaptive Dynamic Programming: Single and Multiple Controllers

Adaptive Dynamic Programming: Single and Multiple Controllers

Author: Ruizhuo Song

Publisher: Springer

Published: 2018-12-28

Total Pages: 278

ISBN-13: 9811317127

DOWNLOAD EBOOK

This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.


Iterative Learning Control

Iterative Learning Control

Author: Hyo-Sung Ahn

Publisher: Springer Science & Business Media

Published: 2007-06-28

Total Pages: 237

ISBN-13: 1846288592

DOWNLOAD EBOOK

This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.