Iterative Approximation of Fixed Points

Iterative Approximation of Fixed Points

Author: Vasile Berinde

Publisher: Springer

Published: 2007-04-20

Total Pages: 338

ISBN-13: 3540722343

DOWNLOAD EBOOK

This monograph gives an introductory treatment of the most important iterative methods for constructing fixed points of nonlinear contractive type mappings. For each iterative method considered, it summarizes the most significant contributions in the area by presenting some of the most relevant convergence theorems. It also presents applications to the solution of nonlinear operator equations as well as the appropriate error analysis of the main iterative methods.


Iterative Methods for Fixed Point Problems in Hilbert Spaces

Iterative Methods for Fixed Point Problems in Hilbert Spaces

Author: Andrzej Cegielski

Publisher: Springer

Published: 2012-09-14

Total Pages: 312

ISBN-13: 3642309011

DOWNLOAD EBOOK

Iterative methods for finding fixed points of non-expansive operators in Hilbert spaces have been described in many publications. In this monograph we try to present the methods in a consolidated way. We introduce several classes of operators, examine their properties, define iterative methods generated by operators from these classes and present general convergence theorems. On this basis we discuss the conditions under which particular methods converge. A large part of the results presented in this monograph can be found in various forms in the literature (although several results presented here are new). We have tried, however, to show that the convergence of a large class of iteration methods follows from general properties of some classes of operators and from some general convergence theorems.


Fixed Point Theory for Lipschitzian-type Mappings with Applications

Fixed Point Theory for Lipschitzian-type Mappings with Applications

Author: Ravi P. Agarwal

Publisher: Springer Science & Business Media

Published: 2009-06-12

Total Pages: 373

ISBN-13: 0387758186

DOWNLOAD EBOOK

In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.


Optimal Solution of Nonlinear Equations

Optimal Solution of Nonlinear Equations

Author: Krzysztof A. Sikorski

Publisher: Oxford University Press

Published: 2001-01-18

Total Pages: 253

ISBN-13: 0198026676

DOWNLOAD EBOOK

Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any reader working in the area of Information-Based Complexity. The worst-case settings are analyzed here. Several classes of functions are studied with special emphasis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises.


Fixed Point Theory and Graph Theory

Fixed Point Theory and Graph Theory

Author: Monther Alfuraidan

Publisher: Academic Press

Published: 2016-06-20

Total Pages: 444

ISBN-13: 0128043652

DOWNLOAD EBOOK

Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. - Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments - Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach - Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications


Advances in Metric Fixed Point Theory and Applications

Advances in Metric Fixed Point Theory and Applications

Author: Yeol Je Cho

Publisher: Springer Nature

Published: 2021-06-05

Total Pages: 503

ISBN-13: 9813366478

DOWNLOAD EBOOK

This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.


Mathematical Analysis, Approximation Theory and Their Applications

Mathematical Analysis, Approximation Theory and Their Applications

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2016-06-03

Total Pages: 745

ISBN-13: 3319312812

DOWNLOAD EBOOK

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.


Fundamentals of Numerical Computation

Fundamentals of Numerical Computation

Author: Tobin A. Driscoll

Publisher: SIAM

Published: 2017-12-21

Total Pages: 583

ISBN-13: 1611975085

DOWNLOAD EBOOK

Fundamentals of Numerical Computation?is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.?


Geometric Properties of Banach Spaces and Nonlinear Iterations

Geometric Properties of Banach Spaces and Nonlinear Iterations

Author: Charles Chidume

Publisher: Springer Science & Business Media

Published: 2009-03-27

Total Pages: 337

ISBN-13: 1848821891

DOWNLOAD EBOOK

The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.