Industrial Biotechnology summarizes different aspects of plant biotechnology such as using plants as sustainable resources, phytomedical applications, phytoremedation and genetic engineering of plant systems. These topics are discussed from an academic as well industrial perspective and thus highlight recent developments but also practical aspects of modern biotechnology.
This book presents basic concepts, methodologies and applications of biotechnology for the conservation and propagation of aromatic, medicinal and other economic plants. It caters to the needs and challenges of researchers in plant biology, biotechnology, the medical sciences, pharmaceutical biotechnology and pharmacology areas by providing an accessible and cost-effective practical approach to micro-propagation and conservation strategies for plant species. It also includes illustrations describing a complete documentation of the results and research into particular plant species conducted by the authors over the past 5 years. Plant Biotechnology has been a subject of academic interest for a considerable time. In recent years, it has also become a useful tool in agriculture and medicine, as well as a popular area of biological research. Current economic growth is globally projected in a highly positive manner, but the challenges many countries face with regard to food, feed, malnutrition, infectious diseases, the newly identified life-style diseases, and energy shortages, all of which are worsened by an ever-deteriorating environment, continue to pull the growth digits back. The common thread that connects all of the above challenges is biotechnology, which could provide many answers. Molecular biology and biotechnology have now become an integral part of tissue culture research. The tremendous impact generated by genetic engineering and consequently of transgenics now allows us to manipulate plant genomes at will. There has indeed been a rapid development in this area with major successes in both developed and developing countries. The book introduces several new and exciting areas to researchers who are unfamiliar with plant biotechnology and also serves as a review of ongoing research and future directions for scholars. The book highlights numerous methods for in vitro propagation and utilization of techniques in raising transgenics to help readers reproduce the experiments discussed.
The application of modern molecular biology techniques is providing new insight into wood formation and the seasonal nature of secondary growth in perennial woody plant species. Extensively illustrated, this new book provides a comprehensive and critical overview of current understanding about the biology of wood formation, with a focus on the development, regulation and biochemistry of cambial growth supplemented by additional considerations of the fundamental factors determining forest productivity, wood quality and heartwood formation.
Eucalypts are used for the production of paper products, firewood, charcoal, potential feedstocks for bioenergy and biomaterials, as ornamentals and landscape trees, and in land rehabilitation. Eucalypt breeding is at an early stage with many plantings being only at the first stages of domestication. The relatively small genomes of these species ma
Lignins are nature's aromatic polymers and are the second most abundant organic constituent of the biosphere next to cellulose. Lignification mainly occurs in the walls of terrestrial vascular plants, mainly in the secondarily thickened cells of supportive or conductive tissues, which thus acquire novel properties. This new volume of Advances in Botanical Research gives a special emphasis to the bioengineering of these enigmatic polymers. It is divided in nine chapters containing up-to-date reviews by expert groups in their field. Gives a special emphasis to the bioengineering of these enigmatic polymers, lignins Divided in nine chapters Contains up-to-date reviews by expert groups in their field
Genetics and Genomics of Populus provides an indepth description of the genetic and genomic tools and approaches for Populus, examines the biology that has been elucidated using genomics, and looks to the future of this unique model plant. This volume is designed to serve both experienced Populus researchers and newcomers to the field. Contributors to the volume are a blend of researchers, some who have spent most of their research career on Populus and others that have moved to Populus from other model systems. Research on Populus forms a useful complement to research on Arabidopsis. In fact, many plant species found in nature are – in terms of the life history and genetics – more similar to Populus than to Arabidopsis. Thus, the genetic and genomic strategies and tools developed by the Populus community, and showcased in this volume, will hopefully provide inspiration for researchers working in other, less well developed, systems.
Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.
With today’s ever growing economic and ecological problems, wood as a raw material takes on increasing significance as the most important renewable source of energy and as industrial feedstock for numerous products. Its chemical and anatomical structure and the excellent properties that result allow wood to be processed into the most diverse products; from logs to furniture and veneers, and from wood chippings to wooden composites and paper. The aim of this book is to review advances in research on the cellular aspects of cambial growth and wood formation in trees over recent decades. The book is divided into two major parts. The first part covers the basic process of wood biosynthesis, focusing on five major steps that are involved in this process: cell division, cell expansion, secondary cell wall formation, programmed cell death and heartwood formation. The second part of the book deals with the regulation of wood formation by endogenous and exogenous factors. On the endogenous level the emphasis is placed on two aspects: control of wood formation by phytohormones and by molecular mechanisms. Apart from endogenous factors, various exogenous effects (such as climate factors) are involved in wood formation. Due to modern microscopic as well as molecular techniques, the understanding of wood formation has progressed significantly over the last decade. Emphasizing the cellular aspects, this book first gives an overview of the basic process of wood formation, before it focuses on factors involved in the regulation of this process.