Deals with the study of irregular behavior in few-body systems, with emphasis on the aspects of atomic physics. Areas covered include the atom in a magnetic field, microwave ionization of Rydberg atoms, and quasi-Wigner crystals in ion traps. All but one of the papers first appeared in volume 25 of the journal Comments on atomic and molecular physics. No index. Annotation copyrighted by Book News, Inc., Portland, OR
This book introduces readers to the full range of current and background activity in the rapidly growing field of nonlinear dynamics. It uses a step-by-step introduction to dynamics and geometry in state space to help in understanding nonlinear dynamics and includes a thorough treatment of both differential equation models and iterated map models as well as a derivation of the famous Feigenbaum numbers. It is the only introductory book available that includes the important field of pattern formation and a survey of the controversial questions of quantum chaos. This second edition has been restructured for easier use and the extensive annotated references are updated through January 2000 and include many web sites for a number of the major nonlinear dynamics research centers. With over 200 figures and diagrams, analytic and computer exercises this book is a necessity for both the classroom and the lab.
Atomic Physics 15 extends the series of books containing the invited papers presented at each International Conference on Atomic Physics (ICAP). The ICAP, held every two years, provides the atomic physics community with an opportunity to review problems of current interest and to consider future directions in the field. This fifteenth meeting also celebrated the centenary of the discovery of the Zeeman effect.
Computational Physics. Selected Methods, Simple Exercises, Serious Applications is an overview written by leading researchers of a variety of fields and developments. Selected Methods introduce the reader to current fields, including molecular dynamics, hybrid Monte-Carlo algorithms, and neural networks. Simple Exercises give hands-on advice for effective program solutions from a small number of lines to demonstration programs with elaborate graphics. Serious Applications show how questions concerning, for example, aging, many-minima optimisation, or phase transitions can be treated by appropriate tools. The source code and demonstration graphics are included on a 3.5" MS-DOS diskette.
The tenth international conference on Laser Spectroscopy covered a broad spectrum of subjects related to laser physics. It featured novel results on very basic problems such as laser cooling, atomic interferometry, QED, quantum and nonlinear optics as well as new laser sources and new methods for laser spectroscopy. These were presented together with their application to the study of atoms, molecules, surfaces, and condensed matter.
The 2001 Spring Meeting of the 65th Deutsche Physikalische Gesellschaft was held together with the 65. Physikertagung, in Hamburg, during the pe riod March 26 30 2001. With more than 3500 conference attendees, a record has again been achieved after several years of stabilisation in participation. This proves the continuing and now even increasing, attraction of solid state physics, especially for young colleagues who often discuss for the first time their scientific results in public at this meeting. More than 2600 scientific pa pers were presented orally, as well as posters, among them about 120 invited lectures from Germany and from abroad. This Volume 41 of "Advances in Solid State Physics" contains the written versions of half of the latter. We nevertheless hope that the book truly reflects the current state of the field. Amazingly enough, the majority of the papers as well as the discussions at the meeting, concentrated on the nanostructured solid state. This re flects the currently extremely intensive quest for developing the electronic and magnetic device generations of the future, which stimulates science be sides the challenge of the unknown as has always been the case since the very beginning of Solid State Physics about 100 years ago.
This expanded and updated well-established textbook contains an advanced presentationof quantum mechanics adapted to the requirements of modern atomic physics. Itincludes topics of current interest such as semiclassical theory, chaos, atom optics andBose-Einstein condensation in atomic gases. In order to facilitate the consolidationof the material covered, various problems are included, together with completesolutions. The emphasis on theory enables the reader to appreciate the fundamentalassumptions underlying standard theoretical constructs and to embark on independentresearch projects. The fourth edition of Theoretical Atomic Physics contains anupdated treatment of the sections involving scattering theory and near-thresholdphenomena manifest in the behaviour of cold atoms (and molecules). Special attentionis given to the quantization of weakly bound states just below the continuum thresholdand to low-energy scattering and quantum reflection just above. Particular emphasisis laid on the fundamental differences between long-ranged Coulombic potentialsand shorter-ranged potentials falling off faster than 1/r2 at large distances r. The newsections on tunable near-threshold Feshbach resonances and on scattering in two spatialdimensions also address problems relevant for current and future research in the fieldof cold (and ultra-cold) atoms. Graduate students and researchers will find this book avaluable resource and comprehensive reference alike.
This new edition presents the recent developments in atomic physics. Beginning with a review of quantum mechanics, the book covers important areas of theoretical atomic physics, including semiclassical theory, periodic orbit theory, scaling properties for atoms in external fields, threshold behavior of ionization cross sections, and classical quantum dynamics of two-electron atoms.
Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study.