Radiation Biophysics

Radiation Biophysics

Author: Edward L. Alpen

Publisher: Academic Press

Published: 1997-10-22

Total Pages: 517

ISBN-13: 0080540201

DOWNLOAD EBOOK

This newly revised and updated edition of Radiation Biophysics provides an in-depth description of the physics and chemistry of radiation and its effects on biological systems. Coverage begins with fundamental concepts of the physics of radiation and radioactivity, then progresses through the chemistry and biology of the interaction of radiation with living systems. The Second Edition of this highly praised text includes major revisions which reflect the rapid advances in the field. New material covers recent developments in the fields of carcinogenesis, DNA repair, molecular genetics, and the molecular biology of oncogenes and tumor suppressor genes. The book also includes extensive discussion of the practical impact of radiation on everyday life. - Covers the fundamentals of radiation physics in a manner that is understandable to students and professionals with a limited physics background - Includes problem sets and exercises to aid both teachers and students - Discusses radioactivity, internally deposited radionuclides, and dosimetry - Analyzes the risks for occupational and non-occupational workers exposed to radiation sources


Characterization and Testing of Materials for Nuclear Reactors

Characterization and Testing of Materials for Nuclear Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2007

Total Pages: 158

ISBN-13:

DOWNLOAD EBOOK

Industrial growth, energy consumption are seen as measures towards economic developments. With increase in industrial development worldwide, the demand of energy is continually on the rise. Today, the energy industry is facing many challenges. Nuclear fission and nuclear fusion are seen as important future energy sources. Development of innovative reactor designs with large efficiency for fuel burn up is one of the needs of fission reactors. The materials resistant to high dose of radiations in fusion reactors is another major challenge. The production of electricity without global warming is an important pressing demand on the energy sector. The demands on quality control of components for nuclear and heavy industry are very stringent. Development of well characterized, high quality materials is therefore essential for safe, efficient and reliable operation of engineering components. The diagnosis of failure of machinery parts comes from the post operational characterization of materials. Various destructive and non-destructive techniques are used for this purpose. Research reactors have played an important role in non-destructive characterization of materials and have contributed to technology development. This publication focuses on characterization of materials for industries in general and nuclear energy sector in particular. The main focus is on research reactor based techniques with some discussion on other allied methods like positron annihilation.--Publisher's description.


Pellet-clad Interaction in Water Reactor Fuels

Pellet-clad Interaction in Water Reactor Fuels

Author:

Publisher: OECD Publishing

Published: 2005

Total Pages: 562

ISBN-13:

DOWNLOAD EBOOK

This publication sets out the findings of an international seminar, held in Aix-en-Provence, France in March 2004, which considered recent progress in the field of pellet-clad interaction in light water reactor fuels. It also reviews current understanding of relevant phenomena and their impact on the nuclear fuel rod under the widest possible conditions, and about both uranium-oxide and mixed-oxide fuels.


Storage of Spent Nuclear Fuel

Storage of Spent Nuclear Fuel

Author: International Atomic Energy Agency

Publisher:

Published: 2021-04-30

Total Pages:

ISBN-13: 9789201061195

DOWNLOAD EBOOK

This publication is a revision by amendment of IAEA Safety Standards Series No. SSG-15 and provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facility and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods beyond the original design lifetime of the storage facility that have become necessary owing to delays in the development of disposal facilities and the reduction in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. Guidance is provided on all stages in the lifetime of a spent fuel storage facility, from planning through siting and design to operation and decommissioning. The revision was undertaken by amending, adding and/or deleting specific paragraphs addressing recommendations and findings from studying the accident at the Fukushima Daiichi nuclear power plant in Japan.


Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions

Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions

Author: International Atomic Energy Agency

Publisher:

Published: 2020-07-30

Total Pages: 218

ISBN-13: 9789201080202

DOWNLOAD EBOOK

This publication is the result of an IAEA technical meeting and reports on Member States' capabilities in modelling, predicting and improving their understanding of the behaviour of nuclear fuel under accident conditions. The main results and outcomes of a coordinated research project (CRP) on this topic are also presented.


Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors

Viability of Inert Matrix Fuel in Reducing Plutonium Amounts in Reactors

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2006

Total Pages: 100

ISBN-13:

DOWNLOAD EBOOK

The reactors around the world have produced more than 2000 tonnes of plutonium, contained in spent fuel or as separated forms through reprocessing. Disposition of fissile materials has become a primary concern of nuclear non-proliferation efforts worldwide. There is a significant interest in IAEA Member States to develop proliferation resistant nuclear fuel cycles for incineration of plutonium such as inert matrix fuels (IMFs). This publication reviews the status of potential IMF candidates and describes several identified candidate materials for both fast and thermal reactors: MgO, ZrO2, SiC, Zr alloy, SiAl, ZrN; some of these have undergone test irradiations and post irradiation examination. Also discussed are modelling of IMF fuel performance and safety analysis. System studies have identified strategies for both implementation of IMF fuel as homogeneous or heterogeneous phases, as assemblies or core loadings and in existing reactors in the shorter term, as well as in new reactors in the longer term.