The key technology to delivering maximum bandwidth over networks is Dense Wave-length Division Multiplexing (DWDM) Describes in detail how DWDM works and how to implement a range of transmission protocols Covers device considerations, the pros and cons of various network layer protocols, and quality of service (QoS) issues The authors are leading experts in this field and provide real-world implementation examples First book to describe the interplay between the physical and IP (Internet Protocol) layers in optical networks
This is the first book to focus on IP over WDM optical networks. It not only summarizes the fundamental mechanisms and the recent development and deployment of WDM optical networks but it also details both the network and the software architectures needed to implement WDM enabled optical networks designed to transport IP traffic. The next generation network employing IP over optical networks is quickly emerging not only in the backbone but also in metro and access networks. Fiber optics revolutionizes the telecom and networking industry by offering enormous network capacity to sustain the next generation Internet growth. IP provides the only convergence layer in a global and ubiquitous Internet. So integrating IP and WDM to transport IP traffic over WDM enabled optical networks efficiently and effectively is an urgent yet important task. * Covers hot areas like traffic engineering, MPLS, peer-to-peer computing, IPv6. * Comprehensive overview of history, background and research. * Presents all requirements for a WDM optical network (enabling technologies, optical components, software architecture, management, etc.). * Performance studies and descriptions of experimental WDM optical networks guarantee the practical approach of the book. Technical engineers and network practitioners, designers and analysts, network managers and technical management personnel as well as first year graduate students or senior undergraduate students majoring in networking and/or network control and management will all find this indispensable.
Annotation IP over WDM (Internet Protocol over Wavelength Division Multiplexer) is an up and coming network management solution that is grabbing the attention of more and more network and telecommunications providers because IP over WDM is the technology that can guarantee network connectivity as specified in service level agreements. This comprehensive survey of IP over WDM gives professionals detailed coverage of integration, system architecture, design and implementation, testing, and network management tools and requirements.
This book constitutes the refereed proceedings of the 5th International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security, MMM-ACNS 2010, held in St. Petersburg, Russia in September 2010. The 16 revised full papers and 6 revised short papers presented together with 5 invited papers were carefully reviewed and selected from a total of 54 submissions. The papers are organized in topical sections on security modeling and covert channels, security policies and formal analysis of security properties, authentication, authorization, access control and public key cryptography, intrusion and malware detection, security of multi-agent systems and software protection, as well as. adaptive security, security analysis and virtualization.
A comprehensive book on DWDM network design and implementation solutions Design Software Included Study various optical communication principles as well as communication methodologies in an optical fiber Design and evaluate optical components in a DWDM network Learn about the effects of noise in signal propagation, especially from OSNR and BER perspectives Design optical amplifier-based links Learn how to design optical links based on power budget Design optical links based on OSNR Design a real DWDM network with impairment due to OSNR, dispersion, and gain tilt Classify and design DWDM networks based on size and performance Understand and design nodal architectures for different classification of DWDM networks Comprehend different protocols for transport of data over the DWDM layer Learn how to test and measure different parameters in DWDM networks and optical systems The demand for Internet bandwidth grows as new applications, new technologies, and increased reliance on the Internet continue to rise. Dense wavelength division multiplexing (DWDM) is one technology that allows networks to gain significant amounts of bandwidth to handle this growing need. DWDM Network Designs and Engineering Solutions shows you how to take advantage of the new technology to satisfy your network's bandwidth needs. It begins by providing an understanding of DWDM technology and then goes on to teach the design, implementation, and maintenance of DWDM in a network. You will gain an understanding of how to analyze designs prior to installation to measure the impact that the technology will have on your bandwidth and network efficiency. This book bridges the gap between physical layer and network layer technologies and helps create solutions that build higher capacity and more resilient networks. Companion CD-ROM The companion CD-ROM contains a complimentary 30-day demo from VPIphotonicstrade; for VPItransmissionMakertrade;, the leading design and simulation tool for photonic components, subsystems, and DWDM transmission systems. VPItransmissionMaker contains 200 standard demos, including demos from Chapter 10, that show how to simulate and characterize devices, amplifiers, and systems.
Compiling the most influential papers from the IEICE Transactions in Communications, High-Performance Backbone Network Technology examines critical breakthroughs in the design and provision of effective public service networks in areas including traffic control, telephone service, real-time video transfer, voice and image transmission for a content delivery network (CDN), and Internet access. The contributors explore system structures, experimental prototypes, and field trials that herald the development of new IP networks that offer quality-of-service (QoS), as well as enhanced security, reliability, and function. Offers many hints and guidelines for future research in IP and photonic backbone network technologies
The essential guide to the state of the art in WDM and its vast networking potential As a result of its huge transmission capacity and countless other advantages, fiber optics has fostered a bandwidth revolution, addressing the constantly growing demand for increased bandwidth. Within this burgeoning area, Wavelength Division Multiplexing (WDM) has emerged as a breakthrough technology for exploiting the capacity of optical fibers. Today, WDM is deployed by many network providers for point-to-point transmission-but there is strong momentum to develop it as a full-fledged networking technology in its own right. The telecommunications industry, network service providers, and research communities worldwide are paying close attention. Optical WDM Networks presents an easy-to-follow introduction to basic concepts, key issues, effective solutions, and state-of-the-art technologies for wavelength-routed WDM networks. Responding to the need for resources focused on the networking potential of WDM, the book is organized in terms of the most important networking aspects, such as: * Network control architecture * Routing and wavelength assignment * Virtual topology design and reconfiguration * Distributed lightpath control and management * Optical-layer protection and restoration * IP over WDM * Trends for the future in optical networks Each chapter includes examples and problems that illustrate and offer practical application of concepts, as well as extensive references for further reading. This is an essential resource for professionals and students in electrical engineering, computer engineering, and computer science as well as network engineers, designers, planners, operators, and managers who seek a backbone of knowledge in optical networks.
Following the emergence of lasers and optical fibers, optical networking made its beginning in the 1970s with high-speed LANs/MANs. In the 1980s, when the bandwidth of intercity microwave links turned out to be inadequate for digital telephony, the technology for single-wavelength optical communications using SONET/SDH arrived as a saviour to replace the microwave links. However, single-wavelength links couldn't utilize the huge bandwidth (40 THz) of optical fibers, while the bandwidth demands kept soaring. This necessitated the use of wavelength-division multiplexing (WDM) for concurrent transmission over multiple wavelengths, increasing the available bandwidth significantly. Today, optical networking has become an indispensable part of telecommunication networks at all hierarchical levels. The book Optical Networks provides a graduate level presentation of optical networks, capturing the past, present and ensuing developments with a unique blend of breadth and depth. The book is organized in four parts and three appendices. Part I presents an overview and the enabling technologies in two chapters, Part II presents the single-wavelength optical networks in three chapters, while Part III deals with the various forms of WDM optical networks in four chapters. Finally, Part IV presents some selected topics in six chapters, dealing with a number of contemporary and emerging topics. Optical Networks provides a comprehensive all-in-one text for beginning graduate as well as final-year undergraduate students, and also allows R&D engineers to quickly refresh the basics and then move on to emerging topics.