Ion Implantation: Basics to Device Fabrication

Ion Implantation: Basics to Device Fabrication

Author: Emanuele Rimini

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 400

ISBN-13: 1461522595

DOWNLOAD EBOOK

Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devices together with a brief description of the main trends in the field. The second chapter is devoted to ion im planters, including also high energy apparatus and a description of wafer charging and contaminants. Yield is a quite relevant is sue in the industrial surrounding and must be also discussed in the academic ambient. The slowing down of ions is treated in the third chapter both analytically and by numerical simulation meth ods. Channeling implants are described in some details in view of their relevance at the zero degree implants and of the available industrial parallel beam systems. Damage and its annealing are the key processes in ion implantation. Chapter four and five are dedicated to this extremely important subject.


Ion Implantation and Beam Processing

Ion Implantation and Beam Processing

Author: J. S. Williams

Publisher: Academic Press

Published: 2014-06-28

Total Pages: 432

ISBN-13: 1483220648

DOWNLOAD EBOOK

Ion Implantation and Beam Processing covers the scientific and technological advances in the fields of ion implantation and beam processing. The book discusses the amorphization and crystallization of semiconductors; the application of the Boltzmann transport equation to ion implantation in semiconductors and multilayer targets; and the high energy density collision cascades and spike effects. The text also describes the implantation of insulators (ices and lithographic materials); the ion-bombardment-induced compositions changes in alloys and compounds; and the fundamentals and applications of ion beam and laser mixing. The high-dose implantation and the trends of ion implantation in silicon technology are also considered. The book further tackles the implantation in gaAs technology and the contacts and interconnections on semiconductors. Engineers and people involved in microelectronics will find the book invaluable.


Ion Implantation in Diamond, Graphite and Related Materials

Ion Implantation in Diamond, Graphite and Related Materials

Author: M.S. Dresselhaus

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 212

ISBN-13: 3642771718

DOWNLOAD EBOOK

Carbon has always been a unique and intriguing material from a funda mental standpoint and, at the same time, a material with many technological uses. Carbon-based materials, diamond, graphite and their many deriva tives, have attracted much attention in recent years for many reasons. Ion implantation, which has proven to be most useful in modifying the near surface properties of many kinds of materials, in particular semiconductors, has also been applied to carbon-based materials. This has yielded, mainly in the last decade, many scientifically interesting and technologically impor tant results. Reports on these studies have been published in a wide variety of journals and topical conferences, which often have little disciplinary overlap, and which often address very different audiences. The need for a review to cover in an integrated way the various diverse aspects of the field has become increasingly obvious. Such a review should allow the reader to get an overview of the research that has been done thus far, to gain an ap preciation of the common features in the response of the various carbon to ion impact, and to become aware of current research oppor allotropes tunities and unresolved questions waiting to be addressed. Realizing this, and having ourselves both contributed to the field, we decided to write a review paper summarizing the experimental and theoretical status of ion implantation into diamond, graphite and related materials.


Ion Implantation Science and Technology

Ion Implantation Science and Technology

Author: J.F. Ziegler

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 649

ISBN-13: 0323144012

DOWNLOAD EBOOK

Ion Implantation: Science and Technology serves as both an introduction to and tutorial on the science, techniques, and machines involved in ion implantation. The book is divided into two parts. Part 1 discusses topics such as the history of the ion implantation; the different types and purposes of ion implanters; the penetration of energetic ions into solids; damage annealing in silicon; and ion implantation metallurgy. Part 2 covers areas such as ion implementation system concepts; ion sources; underlying principles related to ion optics; and safety and radiation considerations in ion implantation. The text is recommended for engineers who would like to be acquainted with the principles and processes behind ion implantation or make studies on the field.


Industrial Accelerators and Their Applications

Industrial Accelerators and Their Applications

Author: Robert Wray Hamm

Publisher: World Scientific

Published: 2012

Total Pages: 436

ISBN-13: 9814307041

DOWNLOAD EBOOK

This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams


Ion Beam Applications

Ion Beam Applications

Author: Ishaq Ahmad

Publisher: BoD – Books on Demand

Published: 2018-07-18

Total Pages: 190

ISBN-13: 178923414X

DOWNLOAD EBOOK

Ion beam of various energies is a standard research tool in many areas of science, from basic physics to diverse areas in space science and technology, device fabrications, materials science, environment science, and medical sciences. It is an advance and versatile tool to frequently discover applications across a broad range of disciplines and fields. Moreover, scientists are continuously improving the ion beam sources and accelerators to explore ion beam at the forefront of scientific endeavours. This book provides a glance view on MeV ion beam applications, focused ion beam generation and its applications as well as practical applications of ion implantation.


Ion Implantation in Semiconductors

Ion Implantation in Semiconductors

Author: Susumu Namba

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 716

ISBN-13: 1468421514

DOWNLOAD EBOOK

The technique of ion implantation has become a very useful and stable technique in the field of semiconductor device fabrication. This use of ion implantation is being adopted by industry. Another important application is the fundamental study of the physical properties of materials. The First Conference on Ion Implantation in Semiconductors was held at Thousand Oaks, California in 1970. The second conference in this series was held at Garmish-Partenkirchen, Germany, in 1971. At the third conference, which convened at Yorktown Heights, New York in 1973, the emphasis was broadened to include metals and insulators as well as semiconductors. This scope of the conference was still accepted at the fourth conference which was held at Osaka, Japan, in 1974. A huge number of papers had been submitted to this conference. All papers which were presented at the Fourth International Conference on Ion Implantation in Semiconductors and Other Materials are included in this proceedings. The success of this conference was due to technical presentations and discussions of 224 participants from 14 countries as well as to financial support from many companies in Japan. On behalf of the committee, I wish to thank the authors for their excellent papers and the sponsors for their financial support. The International Committee responsible for advising this conference consisted of B.L. Crowder, J.A. Davies, G. Dearna1ey, F.H. Eisen, Ph. G1otin, T. Itoh, A.U. MacRae, J.W. Mayer, S. Namba, I. Ruge, and F.L. Vook.


Ion Implantation in Semiconductors

Ion Implantation in Semiconductors

Author: Ingolf Ruge

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 519

ISBN-13: 3642806600

DOWNLOAD EBOOK

In recent years great progress has been made in the field of ion implantation, particularly with respect to applications in semiconductors. It would be impos sible not to note the growing interest in this field, both by research groups and those directly concerned with production of devices. Furthermore, as several papers have pointed out, ion implantation and its associated technologies promise exciting advances in the development of new kinds of devices and provide power ful new tools for materials investigations. It was, therefore, appropriate to arrange the II. International Conference on Ion Implantation in Semiconductors within the rather short time of one year since the first conference was held in 1970 in Thousand Oaks, California. Although ori ginally planned on a small scale with a very limited number of participants, more than two hundred scientists from 15 countries participated in the Conference which was held May 24 - 28, 1971 at the Congress Center in Garmisch-Partenkirchen. This volume contains the papers that were presented at the Conference. Due to the tremendous volume of research presented, publication here of all the works in full detail was not possible. Many authors therefore graciously agreed to submit abbreviated versions of their papers.