This book assembles state-of-the-art approaches for harnessing light energy as a model to develop natural systems such as biofuels. After the basics and potential of photosynthesis of microalgae it discusses topics from engineering micro-algae towards increased photosynthetic efficiency till the optimization of photobioreactor techniques for enhanced biotechnological applications such as cyanobacteria.
Unites a biological and a biotechnological perspective on cyanobacteria, and includes the industrial aspects and applications of cyanobacteria Cyanobacteria Biotechnology offers a guide to the interesting and useful features of cyanobacteria metabolism that keeps true to a biotechnology vision. In one volume the book brings together both biology and biotechnology to illuminate the core acpects and principles of cyanobacteria metabolism. Designed to offer a practical approach to the metabolic engineering of cyanobacteria, the book contains relevant examples of how this metabolic "module" is currently being engineered and how it could be engineered in the future. The author includes information on the requirements and real-world experiences of the industrial applications of cyanobacteria. This important book: Brings together biology and biotechnology in order to gain insight into the industrial relevant topic of cyanobacteria Introduces the key aspects of the metabolism of cyanobacteria Presents a grounded, practical approach to the metabolic engineering of cyanobacteria Offers an analysis of the requirements and experiences for industrial cyanobacteria Provides a framework for readers to design their own processes Written for biotechnologists, microbiologists, biologists, biochemists, Cyanobacteria Biotechnology provides a systematic and clear volume that brings together the biological and biotechnological perspective on cyanobacteria.
Environmental change is affecting the world's agricultural productivity. This is coupled with an increase in population: according to the United Nations Department for Economic and Social Affairs, the global population is estimated to reach 9.7 billion by 2050. Therefore, the current situation requires that we develop climate-smart technologies to improve crop productivity to sustain the ever-rising global population. Current-day farmers are introducing a considerable amount of agrochemicals to enhance crop productivity. Indiscriminate agrochemical application has altered not only the soil's physic-chemical and biological properties but also affected human health through food chain contamination. Cyanobacteria, under these changing environmental conditions, may help to resolve the problem significantly without changing the natural soil properties. In spite of their well-known stress tolerance potential, most of the cyanobacterial stress management and signaling pathways are yet to be fully characterized. Therefore, there is an urgent need to explore cyanobacterial metabolism under stress as well as their regulatory pathways to exploit them for sustainable agriculture. In recent decades, the application of cyanobacteria has attracted scientists because of uniqueness, better adaptability, and synthetic products. Diverse cyanobacterial communities with the ability to fix atmospheric nitrogen, together with their photosynthetic properties, have demonstrated their application under field conditions. Several cyanobacterial species have thus been exploited to enhance soil fertility, mitigate biotic and abiotic stress, and contamination management. Cyanobacterial Lifestyle and its Applications in Biotechnology has been designed to discuss different aspects of cyanobacterial physiology with the aim of helping to provide a better understanding of advanced cyanobacterial molecular biology and their metabolism to uncover the potential of cyanobacteria in the tailoring of stress smart crops for sustainable agriculture. Chapters include valuable information about the role of cyanobacteria in the evolution of life, cyanobacterial photosynthesis, stress-tolerant cyanobacterium, biological nitrogen fixation, circadian rhythms, genetics and molecular biology of abiotic stress responses. - Summarizes various aspects of cyanobacterial research. - Includes comprehensive coverage of molecular approaches for the identification of cyanobacteria and their evolution. - Identifies an expanding horizon of cyanobacterial lifestyle: stress management in cyanobacteria. - Examines cyanobacteria synthetic biology, genetic engineering, photosynthesis and metabolic engineering.
The photosynthetic microbes including microalgae and cyanobacteria are the most widespread photosynthetic organisms on Earth. These organisms thrive successfully in a wide range of ecological habitats, ranging from marine and freshwater to terrestrial environments. The short generation time and capability to fix the atmospheric N2 and cosmopolitan distribution make these organisms unique. Photosynthetic microbes such as cyanobacteria are used as biofertilizer for rice paddy and their application improves soil physico-chemical characteristics and the mineral nutrient status of the soil. However, in recent times they have been exploited for the production of several fine chemicals and biofuel. Due to their simple cellular organization, the bare minimum requirement of nutrients and ease of cultivation, recently the microalgae have been exploited and accompanied by the capacity to produce bio-energy, especially bio-diesel. Use of photosynthetic microbes in wastewater treatment has also generated considerable interest in the scientific community and industry at large. Bioremediation using photosynthetic microbes is an emerging area of research and the organisms accumulate or degrade several environmental contaminants and heavy metals. Because of the antagonistic properties, they are also a potential source of various bioactive compounds. In brief, the potential of photosynthetic microbes could be harnessed for economic viability and sustainability of agro-ecosystems. This book attempts to highlight the potential and prospects of the photosynthetic microbes for the welfare of mankind in view of the anticipated population explosion and global climate change.
A comprehensive, edited volume pulling together research on manipulation of the crop microbiome for climate resilient agriculture Microbes for Climate Resilient Agriculture provides a unique collection of data and a holistic view of the subject with quantitative assessment of how agricultural systems will be transformed in coming decades using hidden treasure of microbes. Authored by leaders in the field and edited to ensure conciseness and clarity, it covers a broad range of agriculturally important crops, discusses the impact of climate change on crops, and examines biotechnologically and environmentally relevant microbes. The book encapsulates the understanding of microbial mediated stress management at field level, and will serve as a springboard for novel research findings and new applications in the field. Chapter coverage includes: the role of the phytomicrobiome in maintaining biofuel crop production in a changing climate; the impact of agriculture on soil microbial community composition and diversity in southeast Asia; climate change impact on plant diseases; microalgae; photosynthetic microorganisms and bioenergy prospects; amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms; role of methylotrophic bacteria in climate change mitigation; conservation agriculture for climate change resilience; archaeal community structure; mycorrhiza-helping plants to navigate environmental stresses; endophytic microorganisms; bacillus thuringiensis; and microbial nanotechnology for climate resilient agriculture. Clear and succinct chapters contributed and edited by leaders in the field Covers microbes' beneficial and detrimental roles in the microbiome, as well as the functions they perform under stress Discusses the crop microbiome, nutrient cycling microbes, endophytes, mycorrhizae, and various pests and diseases, and their roles in sustainable farming Places research in larger context of climate change's effect on global agriculture Microbes for Climate Resilient Agriculture is an important text for scientists and researchers studying microbiology, biotechnology, environmental biology, agronomy, plant physiology, and plant protection.
Advances in Cyanobacterial Biology presents the novel, practical, and theoretical aspects of cyanobacteria, providing a better understanding of basic and advanced biotechnological application in the field of sustainable agriculture. Chapters have been designed to deal with the different aspects of cyanobacteria including their role in the evolution of life, cyanobacterial diversity and classification, isolation, and characterization of cyanobacteria through biochemical and molecular approaches, phylogeny and biogeography of cyanobacteria, symbiosis, Cyanobacterial photosynthesis, morphological and physiological adaptation to abiotic stresses, stress-tolerant cyanobacterium, biological nitrogen fixation. Other topics include circadian rhythms, genetics and molecular biology of abiotic stress responses, application of cyanobacteria and cyanobacterial mats in wastewater treatments, use as a source of novel stress-responsive genes for development of stress tolerance and as a source of biofuels, industrial application, as biofertilizer, cyanobacterial blooms, use in Nano-technology and nanomedicines as well as potential applications. This book will be important for academics and researchers working in cyanobacteria, cyanobacterial environmental biology, cyanobacterial agriculture and cyanobacterial molecular biologists.
Cyanobacteria constitute the most widely distributed group of photosynthetic prokaryotes found in almost all realms of the earth and play an important role in Earth's nitrogen and carbon cycle. The gradual transformation from reducing atmosphere to oxidizing atmosphere was a turning point in the evolutionary history of the earth and made conditions for present life forms possible. Cyanobacteria: From Basic Science to Applications is the first reference volume that comprehensively discusses all aspects of cyanobacteria, including the diverse mechanisms of cyanobacteria for the advancement of cyanobacterial abilities, towards higher biofuel productivity, enhanced tolerance to environmental stress and bioactive compounds and potential for biofertilizers. - Describes cyanobacterial diversity, stress biology, and biotechnological aspects of cyanobacteria - Explores the global importance of cyanobacteria - Provides a broad compilation of research that deals with cyanobacterial stress responses in both controlled laboratory conditions as well as in their natural environment
Cold adaptation includes a complex range of structural and functional adaptations at the level of all cellular constituents, and these adaptations render cold-adapted organisms particularly useful for biotechnological applications. This book presents the most recent knowledge of (i) boundary conditions for microbial life in the cold, (ii) microbial diversity in various cold ecosystems, (iii) molecular cold adaptation mechanisms and (iv) the resulting biotechnological perspectives.
Anoxygenic Photosynthetic Bacteria is a comprehensive volume describing all aspects of non-oxygen-evolving photosynthetic bacteria. The 62 chapters are organized into themes of: Taxonomy, physiology and ecology; Molecular structure of pigments and cofactors; Membrane and cell wall structure: Antenna structure and function; Reaction center structure and electron/proton pathways; Cyclic electron transfer; Metabolic processes; Genetics; Regulation of gene expression, and applications. The chapters have all been written by leading experts and present in detail the current understanding of these versatile microorganisms. The book is intended for use by advanced undergraduate and graduate students and senior researchers in the areas of microbiology, genetics, biochemistry, biophysics and biotechnology.
With the high interest in renewable resources, the field of algal biotechnology has undergone a huge leap in importance in recent years. The book Microalgae Biotechnology - Integration and Economy treats integrated approaches to bring the high potential of microalgae into application, accelerate the development of really working production processes and put finally the products on the market. Close interaction of biology and process engineering becomes visible in the described processes. The big impact of microalgal biotechnology on our future society is outlined as a desirable consequence of scientific progress. This book will allow protagonists in academia and industry as well as decision makers in industry and politics to get a clear picture of current possibilities and future trends in microalgal biotechnology.