State of the Art Evaluation of Traffic Detection and Monitoring Systems

State of the Art Evaluation of Traffic Detection and Monitoring Systems

Author: Dan Middleton

Publisher:

Published: 2007

Total Pages: 134

ISBN-13:

DOWNLOAD EBOOK

This report covers the Phase A and B activities of Research Project SPR 627 for the Arizona Department of Transportation (ADOT). Phase C is planned as a separate research activity and is anticipated to begin in the near term, following the completion of Phases A and B. The need for a better valuation program for new traffic detection systems came in part from a lack of confidence in existing detectors, as well as the need for non-intrusive detectors to replace failing embedded inductive loops. The primary objectives of this research were to identify the most promising vehicle detection technologies to meet ADOT needs, to identify candidate test sites, to develop a field test evaluation plan, and to develop and deliver a detailed design of the detection testbed on the selected segment of freeway. The Texas Transportation Institute (TTI) met these objectives through an Internet and literature search, a state-of-the-practice review, a search of relevant new detector systems, and through meetings with the Technical Advisory Committee (TAC). Relying on TAC input, TTI developed first a conceptual design, followed by a detailed design and budget for a proposed test facility located on I-10 in Phoenix just west of the 16th Street interchange. Detectors selected for test in the initial period of 12-plus months during Phase C (and the technology used) are as follows: Wavetronix SS-125 (microwave radar), Sensys Networks (magnetic), Global Traffic Technologies microloops (magnetic) and Autoscope Solo Pro (video imaging). The baseline system selected for providing ground truth data is the Peek ADR-6000 using inductive signatures as its basis of detection. It is anticipated that this Phase C testing will include two summer seasons to expose selected detectors to the extreme heat and related environmental conditions found in the Phoenix. The initial cost of the testbed will include detectors sufficient to ultimately cover eight lanes in the westbound direction (currently seven lanes) and six lanes in the eastbound direction. Besides the detectors, the total cost estimate includes a 12 ft by 12 ft node building, three equipment cabinets, inductive loops for the baseline system, conduit, and boring. The total cost of the facility is estimated to be approximately $566,000.


Alternative Vehicle Detection Technologies for Traffic Signal Systems

Alternative Vehicle Detection Technologies for Traffic Signal Systems

Author: Dan R. Middleton

Publisher:

Published: 2009

Total Pages: 98

ISBN-13:

DOWNLOAD EBOOK

Due to the well-documented problems associated with inductive loops, most jurisdictions have replaced many intersection loops with video image vehicle detection systems (VIVDS). While VIVDS have overcome some of the problems with loops such as traffic disruption and pavement degradation, they have not been as accurate as originally anticipated. The objective of this project is to conduct evaluations of alternative detector technologies for application into the states traffic signal systems. The research will include investigating the available detectors that could replace loops or VIVDS through a literature search and agency contacts, followed by field and/or laboratory investigations of promising technologies. Deliverables will include a research report, a project summary report, and a detector selection guide. Findings indicate that three detectors should be considered as alternatives to VIVDS for signalized intersections one is a radar detector and the other two are magnetic detectors. The radar detector is only for dilemma zone detection and does not cover the stop line area. The other two are point detectors, so their basic function would be for loop replacements. One is an intrusive detector, requiring a short lane closure for installation and replacement. Field testing of performance for all three detectors indicated they are worth considering as inductive loop or VIVDS replacements.