Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies

Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies

Author: Stephan Henzler

Publisher: Springer Science & Business Media

Published: 2006-11-24

Total Pages: 198

ISBN-13: 140205081X

DOWNLOAD EBOOK

This book provides an in-depth overview of design and implementation of leakage reduction techniques. The focus is on applicability, technology dependencies, and scalability. The book mainly deals with circuit design but also addresses the interface between circuit and system level design on the one side and between circuit and physical design on the other side.


Low Power Design in Deep Submicron Electronics

Low Power Design in Deep Submicron Electronics

Author: W. Nebel

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 582

ISBN-13: 1461556856

DOWNLOAD EBOOK

Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium


Compact Models and Performance Investigations for Subthreshold Interconnects

Compact Models and Performance Investigations for Subthreshold Interconnects

Author: Rohit Dhiman

Publisher: Springer

Published: 2014-11-07

Total Pages: 122

ISBN-13: 813222132X

DOWNLOAD EBOOK

The book provides a detailed analysis of issues related to sub-threshold interconnect performance from the perspective of analytical approach and design techniques. Particular emphasis is laid on the performance analysis of coupling noise and variability issues in sub-threshold domain to develop efficient compact models. The proposed analytical approach gives physical insight of the parameters affecting the transient behavior of coupled interconnects. Remedial design techniques are also suggested to mitigate the effect of coupling noise. The effects of wire width, spacing between the wires, wire length are thoroughly investigated. In addition, the effect of parameters like driver strength on peak coupling noise has also been analyzed. Process, voltage and temperature variations are prominent factors affecting sub-threshold design and have also been investigated. The process variability analysis has been carried out using parametric analysis, process corner analysis and Monte Carlo technique. The book also provides a qualitative summary of the work reported in the literature by various researchers in the design of digital sub-threshold circuits. This book should be of interest for researchers and graduate students with deeper insights into sub-threshold interconnect models in particular. In this sense, this book will best fit as a text book and/or a reference book for students who are initiated in the area of research and advanced courses in nanotechnology, interconnect design and modeling.


Low-Power CMOS Wireless Communications

Low-Power CMOS Wireless Communications

Author: Samuel Sheng

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 281

ISBN-13: 1461554578

DOWNLOAD EBOOK

Low-Power CMOS Wireless Communications: A Wideband CDMA System Design focuses on the issues behind the development of a high-bandwidth, silicon complementary metal-oxide silicon (CMOS) low-power transceiver system for mobile RF wireless data communications. In the design of any RF communications system, three distinct factors must be considered: the propagation environment in question, the multiplexing and modulation of user data streams, and the complexity of hardware required to implement the desired link. None of these can be allowed to dominate. Coupling between system design and implementation is the key to simultaneously achieving high bandwidth and low power and is emphasized throughout the book. The material presented in Low-Power CMOS Wireless Communications: A Wideband CDMA System Design is the result of broadband wireless systems research done at the University of California, Berkeley. The wireless development was motivated by a much larger collaborative effort known as the Infopad Project, which was centered on developing a mobile information terminal for multimedia content - a wireless `network computer'. The desire for mobility, combined with the need to support potentially hundreds of users simultaneously accessing full-motion digital video, demanded a wireless solution that was of far lower power and higher data rate than could be provided by existing systems. That solution is the topic of this book: a case study of not only wireless systems designs, but also the implementation of such a link, down to the analog and digital circuit level.


Fundamentals of Modern VLSI Devices

Fundamentals of Modern VLSI Devices

Author: Yuan Taur

Publisher: Cambridge University Press

Published: 2013-05-02

Total Pages: 0

ISBN-13: 9781107635715

DOWNLOAD EBOOK

Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.


Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters

Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters

Author: Sai-Weng Sin

Publisher: Springer Science & Business Media

Published: 2010-09-29

Total Pages: 147

ISBN-13: 9048197104

DOWNLOAD EBOOK

Analog-to-Digital Converters (ADCs) play an important role in most modern signal processing and wireless communication systems where extensive signal manipulation is necessary to be performed by complicated digital signal processing (DSP) circuitry. This trend also creates the possibility of fabricating all functional blocks of a system in a single chip (System On Chip - SoC), with great reductions in cost, chip area and power consumption. However, this tendency places an increasing challenge, in terms of speed, resolution, power consumption, and noise performance, in the design of the front-end ADC which is usually the bottleneck of the whole system, especially under the unavoidable low supply-voltage imposed by technology scaling, as well as the requirement of battery operated portable devices. Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters will present new techniques tailored for low-voltage and high-speed Switched-Capacitor (SC) ADC with various design-specific considerations.


Low-Power VLSI Circuits and Systems

Low-Power VLSI Circuits and Systems

Author: Ajit Pal

Publisher: Springer

Published: 2014-11-17

Total Pages: 417

ISBN-13: 8132219376

DOWNLOAD EBOOK

The book provides a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy; starting from the layout level to the system level. For a seamless understanding of the subject, basics of MOS circuits has been introduced at transistor, gate and circuit level; followed by various low-power design methodologies, such as supply voltage scaling, switched capacitance minimization techniques and leakage power minimization approaches. The content of this book will prove useful to students, researchers, as well as practicing engineers.


Low Power Designs in Nanodevices and Circuits for Emerging Applications

Low Power Designs in Nanodevices and Circuits for Emerging Applications

Author: Shilpi Birla

Publisher: CRC Press

Published: 2023-11-14

Total Pages: 360

ISBN-13: 1000995186

DOWNLOAD EBOOK

This reference textbook discusses low power designs for emerging applications. This book focuses on the research challenges associated with theory, design, and applications towards emerging Microelectronics and VLSI device design and developments, about low power consumptions. The advancements in large-scale integration technologies are principally responsible for the growth of the electronics industry. This book is focused on senior undergraduates, graduate students, and professionals in the field of electrical and electronics engineering, nanotechnology. This book: • Discusses various low power techniques and applications for designing efficient circuits. • Covers advance nanodevices such as FinFETs, TFETs, CNTFETs. • Covers various emerging areas like Quantum-Dot Cellular Automata Circuits and FPGAs and sensors. • Discusses applications like memory design for low power applications using nanodevices. The number of options for ICs in control applications, telecommunications, high-performance computing, and consumer electronics continues to grow with the emergence of VLSI designs. Nanodevices have revolutionized the electronics market and human life; it has impacted individual life to make it more convenient. They are ruling every sector such as electronics, energy, biomedicine, food, environment, and communication. This book discusses various emerging low power applications using CMOS and other emerging nanodevices.


Low-Power CMOS Circuits

Low-Power CMOS Circuits

Author: Christian Piguet

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 438

ISBN-13: 1420036505

DOWNLOAD EBOOK

The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.


All-Digital Frequency Synthesizer in Deep-Submicron CMOS

All-Digital Frequency Synthesizer in Deep-Submicron CMOS

Author: Robert Bogdan Staszewski

Publisher: John Wiley & Sons

Published: 2006-09-22

Total Pages: 281

ISBN-13: 0470041943

DOWNLOAD EBOOK

A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.