Data-driven Models in Inverse Problems

Data-driven Models in Inverse Problems

Author: Tatiana A. Bubba

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-11-18

Total Pages: 508

ISBN-13: 3111251233

DOWNLOAD EBOOK

Advances in learning-based methods are revolutionizing several fields in applied mathematics, including inverse problems, resulting in a major paradigm shift towards data-driven approaches. This volume, which is inspired by this cutting-edge area of research, brings together contributors from the inverse problem community and shows how to successfully combine model- and data-driven approaches to gain insight into practical and theoretical issues.


Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Author: Ke Chen

Publisher: Springer Nature

Published: 2023-02-24

Total Pages: 1981

ISBN-13: 3030986616

DOWNLOAD EBOOK

This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model-driven approaches to the emerging data-driven approaches of machine and deep learning. No other framework can provide comparable accuracy and precision to imaging and vision. Written by leading researchers in imaging and vision, the chapters in this handbook all start with gentle introductions, which make this work accessible to graduate students. For newcomers to the field, the book provides a comprehensive and fast-track introduction to the content, to save time and get on with tackling new and emerging challenges. For researchers, exposure to the state of the art of research works leads to an overall view of the entire field so as to guide new research directions and avoid pitfalls in moving the field forward and looking into the next decades of imaging and information services. This work can greatly benefit graduate students, researchers, and practitioners in imaging and vision; applied mathematicians; medical imagers; engineers; and computer scientists.


Computational Methods for Electromagnetic Inverse Scattering

Computational Methods for Electromagnetic Inverse Scattering

Author: Xudong Chen

Publisher: John Wiley & Sons

Published: 2018-07-18

Total Pages: 325

ISBN-13: 1119311985

DOWNLOAD EBOOK

A comprehensive and updated overview of the theory, algorithms and applications of for electromagnetic inverse scattering problems Offers the recent and most important advances in inverse scattering grounded in fundamental theory, algorithms and practical engineering applications Covers the latest, most relevant inverse scattering techniques like signal subspace methods, time reversal, linear sampling, qualitative methods, compressive sensing, and noniterative methods Emphasizes theory, mathematical derivation and physical insights of various inverse scattering problems Written by a leading expert in the field


Sub-Terahertz Sensing Technology for Biomedical Applications

Sub-Terahertz Sensing Technology for Biomedical Applications

Author: Shiban Kishen Koul

Publisher: Springer Nature

Published: 2022-08-20

Total Pages: 289

ISBN-13: 9811931402

DOWNLOAD EBOOK

This book offers the readers an opportunity to acquire the concepts of artificial intelligence (AI) enabled sub-THz systems for novel applications in the biomedical field. The readers will also be inspired to contextualize these applications for solving real life problems such as non-invasive glucose monitoring systems, cancer detection and dental imaging. The introductory section of this book focuses on existing technologies for radio frequency and infrared sensing in biomedical applications, and their limited use in sensing applications, as well as the advantages of using THz technology in this context. This is followed by a detailed comparative analysis of THz electronics technology and other conventional electro optic THz setups highlighting the superior efficiency, affordability and portability of electronics-based THz systems. The book also discusses electronic sub-THz measurement systems for different biomedical applications. The chapters elucidate two major applications where sub-THz provides an edge over existing state of the art techniques used for non-invasive measurement of blood glucose levels and intraoperative assessment of tumor margins. There is a detailed articulation of an application of leveraging machine learning for measurement systems for non-invasive glucose concentration measurement. This helps the reader relate to the output in a more user-friendly format and understand the possible use cases in a more lucid manner. The book is intended to help the reader learn how to build tissue phantoms and characterize them at sub-THz frequencies in order to test the measurement systems. Towards the end of the book, a brief introduction to system automation for biomedical imaging is provided as well for quick analysis of the data. The book will empower the reader to understand and appreciate the immense possibilities of using electronic THz systems in the biomedical field, creating gateways for fueling further research in this area.​


Mathematical Modeling in Biomedical Imaging II

Mathematical Modeling in Biomedical Imaging II

Author: Habib Ammari

Publisher: Springer

Published: 2011-09-15

Total Pages: 170

ISBN-13: 3642229905

DOWNLOAD EBOOK

This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools. It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.


Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 1626

ISBN-13: 0387929193

DOWNLOAD EBOOK

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.


LED-Based Photoacoustic Imaging

LED-Based Photoacoustic Imaging

Author: Mithun Kuniyil Ajith Singh

Publisher: Springer Nature

Published: 2020-04-07

Total Pages: 393

ISBN-13: 9811539847

DOWNLOAD EBOOK

This book highlights the use of LEDs in biomedical photoacoustic imaging. In chapters written by key opinion leaders in the field, it covers a broad range of topics, including fundamentals, principles, instrumentation, image reconstruction and data/image processing methods, preclinical and clinical applications of LED-based photoacoustic imaging. Apart from preclinical imaging studies and early clinical pilot studies using LED-based photoacoustics, the book includes a chapter exploring the opportunities and challenges of clinical translation from an industry perspective. Given its scope, the book will appeal to scientists and engineers in academia and industry, as well as medical experts interested in the clinical applications of photoacoustic imaging.


Modeling, Simulation and Optimization of Complex Processes HPSC 2018

Modeling, Simulation and Optimization of Complex Processes HPSC 2018

Author: Hans Georg Bock

Publisher: Springer Nature

Published: 2020-12-01

Total Pages: 402

ISBN-13: 3030552403

DOWNLOAD EBOOK

This proceedings volume highlights a selection of papers presented at the 7th International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam, during March 19-23, 2018. The conference has been organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology, the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered include numerical simulation, methods for optimization and control, machine learning, parallel computing and software development, as well as the applications of scientific computing in mechanical engineering, airspace engineering, environmental physics, decision making, hydrogeology, material science and electric circuits.


Photoacoustic Imaging and Spectroscopy

Photoacoustic Imaging and Spectroscopy

Author: Lihong V. Wang

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 518

ISBN-13: 1420059920

DOWNLOAD EBOOK

Photoacoustics promises to revolutionize medical imaging and may well make as dramatic a contribution to modern medicine as the discovery of the x-ray itself once did. Combining electromagnetic and ultrasonic waves synergistically, photoacoustics can provide deep speckle-free imaging with high electromagnetic contrast at high ultrasonic resolution and without any health risk. While photoacoustic imaging is probably the fastest growing biomedical imaging technology, this book is the first comprehensive volume in this emerging field covering both the physics and the remarkable noninvasive applications that are changing diagnostic medicine. Bringing together the leading pioneers in this field to write about their own work, Photoacoustic Imaging and Spectroscopy is the first to provide a full account of the latest research and developing applications in the area of biomedical photoacoustics. Photoacoustics can provide functional sensing of physiological parameters such as the oxygen saturation of hemoglobin. It can also provide high-contrast functional imaging of angiogenesis and hypermetabolism in tumors in vivo. Discussing these remarkable noninvasive applications and so much more, this reference is essential reading for all researchers in medical imaging and those clinicians working at the cutting-edge of modern biotechnology to develop diagnostic techniques that can save many lives and just as importantly do no harm.