Inverse Problems for Polynomial and Rational Matrices

Inverse Problems for Polynomial and Rational Matrices

Author: Richard Allen Hollister

Publisher:

Published: 2020

Total Pages: 157

ISBN-13:

DOWNLOAD EBOOK

Inverse problems have long been studied in mathematics not only because there are many applications in science and engineering, but also because they yield new insight into the beauty of mathematics. Central to the subject of linear algebra is the eigenvalue problem: given a matrix, and its eigenvalues (numerical invariants). Eigenvalue problems play a key role in almost every field of scientific endeavor from calculating the vibrational modes of a molecule to modeling the spread of an infectious disease, and so have been studied extensively since the time of Euler in the 18th century. If a typical matrix eigenvalue problem asks for the eigenvalues of a given matrix, an inverse eigenvalue problem asks for a matrix whose eigenvalues are a given list of numbers. For matrices over an algebraically closed field, the inverse eigenvalue problem is completely and transparently solved by the Jordan canonical form. If the field is not algebraically closed, there are similar, albeit more involved, solutions, a prime example of which is the real Jordan form when the field is the real numbers. Eigenvalue and inverse eigenvalue problems go beyond just matrices with fixed scalar entries. They have been studied for matrix pencils, which are matrices whose entries are degree-one polynomials with coefficients from a field. A polynomial matrix is a matrix whose entries are polynomials with coefficients from a field. The story of eigenvalues for polynomial matrices (of which matrix pencils are a special case) is more complicated because of the possibility of an infinite eigenvalue. In addition, for singular polynomial matrices, there are invariants that characterize the left and right null spaces called minimal indices. The collection of all this data (finite and infinite eigenvalues together with minimal indices) is known as the structural data of the polynomial matrix. In this dissertation, the inverse structural data problem for polynomial matrices is considered and solved. We begin with the history of this inverse problem, including known results and applications from the literature. Then a new solution is given that is sparse and transparently reveals the structural data in much the same way that the Jordan canonical form transparently reveals the structural data of a scalar matrix. The dissertation concludes by discussing the inverse problem for rational matrices (matrices whose entries are rational functions over a field) and presenting a solution adapted from the solution for the polynomial matrix inverse problem.


Generic Polynomials

Generic Polynomials

Author: Christian U. Jensen

Publisher: Cambridge University Press

Published: 2002-12-09

Total Pages: 272

ISBN-13: 9780521819985

DOWNLOAD EBOOK

Table of contents


Direct and Inverse Finite-Dimensional Spectral Problems on Graphs

Direct and Inverse Finite-Dimensional Spectral Problems on Graphs

Author: Manfred Möller

Publisher: Springer Nature

Published: 2020-10-30

Total Pages: 349

ISBN-13: 3030604845

DOWNLOAD EBOOK

Considering that the motion of strings with finitely many masses on them is described by difference equations, this book presents the spectral theory of such problems on finite graphs of strings. The direct problem of finding the eigenvalues as well as the inverse problem of finding strings with a prescribed spectrum are considered. This monograph gives a comprehensive and self-contained account on the subject, thereby also generalizing known results. The interplay between the representation of rational functions and their zeros and poles is at the center of the methods used. The book also unravels connections between finite dimensional and infinite dimensional spectral problems on graphs, and between self-adjoint and non-self-adjoint finite-dimensional problems. This book is addressed to researchers in spectral theory of differential and difference equations as well as physicists and engineers who may apply the presented results and methods to their research.


Polynomial and Rational Matrices

Polynomial and Rational Matrices

Author: Tadeusz Kaczorek

Publisher: Springer Science & Business Media

Published: 2007-01-19

Total Pages: 514

ISBN-13: 1846286050

DOWNLOAD EBOOK

This book reviews new results in the application of polynomial and rational matrices to continuous- and discrete-time systems. It provides the reader with rigorous and in-depth mathematical analysis of the uses of polynomial and rational matrices in the study of dynamical systems. It also throws new light on the problems of positive realization, minimum-energy control, reachability, and asymptotic and robust stability.


Inverse Problems in Ordinary Differential Equations and Applications

Inverse Problems in Ordinary Differential Equations and Applications

Author: Jaume Llibre

Publisher: Birkhäuser

Published: 2016-03-09

Total Pages: 275

ISBN-13: 3319263390

DOWNLOAD EBOOK

This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.


Inverse Eigenvalue Problems

Inverse Eigenvalue Problems

Author: Moody Chu

Publisher: Oxford University Press

Published: 2005-06-16

Total Pages: 408

ISBN-13: 0198566646

DOWNLOAD EBOOK

Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.


Inverse Galois Theory

Inverse Galois Theory

Author: Gunter Malle

Publisher: Springer

Published: 2018-07-27

Total Pages: 547

ISBN-13: 3662554208

DOWNLOAD EBOOK

A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.


Topics in Interpolation Theory of Rational Matrix-valued Functions

Topics in Interpolation Theory of Rational Matrix-valued Functions

Author: I. Gohberg

Publisher: Birkhäuser

Published: 2013-11-21

Total Pages: 257

ISBN-13: 3034854692

DOWNLOAD EBOOK

One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.


Error-Free Polynomial Matrix Computations

Error-Free Polynomial Matrix Computations

Author: E.V. Krishnamurthy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 170

ISBN-13: 1461251184

DOWNLOAD EBOOK

This book is written as an introduction to polynomial matrix computa tions. It is a companion volume to an earlier book on Methods and Applications of Error-Free Computation by R. T. Gregory and myself, published by Springer-Verlag, New York, 1984. This book is intended for seniors and graduate students in computer and system sciences, and mathematics, and for researchers in the fields of computer science, numerical analysis, systems theory, and computer algebra. Chapter I introduces the basic concepts of abstract algebra, including power series and polynomials. This chapter is essentially meant for bridging the gap between the abstract algebra and polynomial matrix computations. Chapter II is concerned with the evaluation and interpolation of polynomials. The use of these techniques for exact inversion of poly nomial matrices is explained in the light of currently available error-free computation methods. In Chapter III, the principles and practice of Fourier evaluation and interpolation are described. In particular, the application of error-free discrete Fourier transforms for polynomial matrix computations is consi dered.