Quantum Invariants of Knots and 3-Manifolds

Quantum Invariants of Knots and 3-Manifolds

Author: Vladimir G. Turaev

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2016-07-11

Total Pages: 608

ISBN-13: 3110435225

DOWNLOAD EBOOK

Due to the strong appeal and wide use of this monograph, it is now available in its third revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. Contents: Invariants of graphs in Euclidean 3-space and of closed 3-manifolds Foundations of topological quantum field theory Three-dimensional topological quantum field theory Two-dimensional modular functors 6j-symbols Simplicial state sums on 3-manifolds Shadows of manifolds and state sums on shadows Constructions of modular categories


Introductory Lectures on Knot Theory

Introductory Lectures on Knot Theory

Author: Louis H. Kauffman

Publisher: World Scientific

Published: 2012

Total Pages: 577

ISBN-13: 9814313009

DOWNLOAD EBOOK

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.


Quantum Field Theory and Manifold Invariants

Quantum Field Theory and Manifold Invariants

Author: Daniel S. Freed

Publisher: American Mathematical Society, IAS/Park City Mathematics Institute

Published: 2021-12-02

Total Pages: 476

ISBN-13: 1470461234

DOWNLOAD EBOOK

This volume contains lectures from the Graduate Summer School “Quantum Field Theory and Manifold Invariants” held at Park City Mathematics Institute 2019. The lectures span topics in topology, global analysis, and physics, and they range from introductory to cutting edge. Topics treated include mathematical gauge theory (anti-self-dual equations, Seiberg-Witten equations, Higgs bundles), classical and categorified knot invariants (Khovanov homology, Heegaard Floer homology), instanton Floer homology, invertible topological field theory, BPS states and spectral networks. This collection presents a rich blend of geometry and topology, with some theoretical physics thrown in as well, and so provides a snapshot of a vibrant and fast-moving field. Graduate students with basic preparation in topology and geometry can use this volume to learn advanced background material before being brought to the frontiers of current developments. Seasoned researchers will also benefit from the systematic presentation of exciting new advances by leaders in their fields.


An Invitation to Knot Theory

An Invitation to Knot Theory

Author: Heather A. Dye

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 256

ISBN-13: 1315362384

DOWNLOAD EBOOK

The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.


LinKnot

LinKnot

Author: Slavik V. Jablan

Publisher: World Scientific

Published: 2007

Total Pages: 497

ISBN-13: 9812772243

DOWNLOAD EBOOK

LinKnot OCo Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics. The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves. Hands-on computations using Mathematica or the webMathematica package LinKnot (available online at http: //math.ict.edu.rs ) and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links. Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata. Sample Chapter(s). 1.1 Basic graph theory (176 KB). Contents: Notation of Knots and Links; Recognition and Generation of Knots and Links; History of Knot Theory and Applications of Knots and Links. Readership: Researchers interested in knot theory and users of Mathematica."


Primes and Knots

Primes and Knots

Author: Toshitake Kohno

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 298

ISBN-13: 0821834568

DOWNLOAD EBOOK

This volume deals systematically with connections between algebraic number theory and low-dimensional topology. Of particular note are various inspiring interactions between number theory and low-dimensional topology discussed in most papers in this volume. For example, quite interesting are the use of arithmetic methods in knot theory and the use of topological methods in Galois theory. Also, expository papers in both number theory and topology included in the volume can help a wide group of readers to understand both fields as well as the interesting analogies and relations that bring them together.


Canonical Wick Rotations in 3-Dimensional Gravity

Canonical Wick Rotations in 3-Dimensional Gravity

Author: R. Benedetti

Publisher: American Mathematical Soc.

Published: 2009-03-06

Total Pages: 181

ISBN-13: 0821842811

DOWNLOAD EBOOK

The authors develop a canonical Wick rotation-rescaling theory in $3$-dimensional gravity. This includes (a) A simultaneous classification: this shows how maximal globally hyperbolic spacetimes of arbitrary constant curvature, which admit a complete Cauchy surface and canonical cosmological time, as well as complex projective structures on arbitrary surfaces, are all different materializations of ``more fundamental'' encoding structures. (b) Canonical geometric correlations: this shows how spacetimes of different curvature, that share a same encoding structure, are related to each other by canonical rescalings, and how they can be transformed by canonical Wick rotations in hyperbolic $3$-manifolds, that carry the appropriate asymptotic projective structure. Both Wick rotations and rescalings act along the canonical cosmological time and have universal rescaling functions. These correlations are functorial with respect to isomorphisms of the respective geometric categories.


Quandles and Topological Pairs

Quandles and Topological Pairs

Author: Takefumi Nosaka

Publisher: Springer

Published: 2017-11-20

Total Pages: 138

ISBN-13: 9811067937

DOWNLOAD EBOOK

This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles.More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects G/H, where G and H are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, K2 groups, and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology.For applications in topology, it is shown that from the perspective that some existing results in topology can be recovered from some quandles, a method is provided to diagrammatically compute some “relative homology”. (Such classes since have been considered to be uncomputable and speculative). Furthermore, the book provides a perspective that unifies some previous studies of quandles.The former part of the book explains motivations for studying quandles and discusses basic properties of quandles. The latter focuses on low-dimensional topology or knot theory. Finally, problems and possibilities for future developments of quandle theory are posed.