Introductory Lectures on Manifold Topology

Introductory Lectures on Manifold Topology

Author: Thomas Farrell

Publisher:

Published: 2014-04-25

Total Pages: 128

ISBN-13: 9781571462879

DOWNLOAD EBOOK

Since the 1950s, many new ideas and tools from algebra, and algebraic and geometric topology, have been applied to study the structure of high-dimensional differential and topological manifolds, and so today it can be difficult for beginners to delve through the literature. This volume is a helpful guide to the basic concepts and results of topology of manifolds -- including the h- and s-cobordism theorems, topological invariance of rational Pontryagin classes, surgery theory, and algebraic K-theory


An Introduction to Manifolds

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

Published: 2010-10-05

Total Pages: 426

ISBN-13: 1441974008

DOWNLOAD EBOOK

Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.


Introduction to Topological Manifolds

Introduction to Topological Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 395

ISBN-13: 038722727X

DOWNLOAD EBOOK

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.


Calculus on Manifolds

Calculus on Manifolds

Author: Michael Spivak

Publisher: Westview Press

Published: 1965

Total Pages: 164

ISBN-13: 9780805390216

DOWNLOAD EBOOK

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.


Introduction to Smooth Manifolds

Introduction to Smooth Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 646

ISBN-13: 0387217525

DOWNLOAD EBOOK

Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why


Introductory Lectures on Knot Theory

Introductory Lectures on Knot Theory

Author: Louis H. Kauffman

Publisher: World Scientific

Published: 2012

Total Pages: 577

ISBN-13: 9814313009

DOWNLOAD EBOOK

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.


Introductory Lectures on Equivariant Cohomology

Introductory Lectures on Equivariant Cohomology

Author: Loring W. Tu

Publisher: Princeton University Press

Published: 2020-03-03

Total Pages: 337

ISBN-13: 0691191751

DOWNLOAD EBOOK

This book gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Equivariant cohomology is concerned with the algebraic topology of spaces with a group action, or in other words, with symmetries of spaces. First defined in the 1950s, it has been introduced into K-theory and algebraic geometry, but it is in algebraic topology that the concepts are the most transparent and the proofs are the simplest. One of the most useful applications of equivariant cohomology is the equivariant localization theorem of Atiyah-Bott and Berline-Vergne, which converts the integral of an equivariant differential form into a finite sum over the fixed point set of the group action, providing a powerful tool for computing integrals over a manifold. Because integrals and symmetries are ubiquitous, equivariant cohomology has found applications in diverse areas of mathematics and physics. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localization theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.


Introduction to Differential Topology

Introduction to Differential Topology

Author: Theodor Bröcker

Publisher: Cambridge University Press

Published: 1982-09-16

Total Pages: 176

ISBN-13: 9780521284707

DOWNLOAD EBOOK

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.


Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint

Author: John Willard Milnor

Publisher: Princeton University Press

Published: 1997-12-14

Total Pages: 80

ISBN-13: 9780691048338

DOWNLOAD EBOOK

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.