A thorough understanding of biology, no matter which subfield, requires a thorough understanding of statistics. As in previous editions, Havel and Hampton (with new co-author Scott Meiners) ground students in all essential methods of descriptive and inferential statistics, using examples from different biological sciences. The authors have retained the readable, accessible writing style popular with both students and instructors. Pedagogical improvements new to this edition include concept checks in all chapters to assist students in active learning and code samples showing how to solve many of the book's examples using R. Each chapter features numerous practice and homework exercises, with larger data sets available for download at waveland.com.
"A thorough grounding in statistics is necessary for a career in any experimental science, but many students find themselves intimidated by the subject. Hampton and Havel have written this text with these students in mind. While providing the theory and assumptions necessary for a deep understanding of statistics, they make it approachable and keep it relevant to the interests of biology students. Their examples and exercises show how to choose the appropriate statistical method for a particular hypothesis and how to execute that method using problems encountered by real-world biologists. The second edition has been ambitiously updated and reorganized, facilitating clearer connections between topics and improving clarity of those that are logically distinct."--BOOK JACKET.
Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.
Maintaining the same accessible and hands-on presentation, Introductory Biostatistics, Second Edition continues to provide an organized introduction to basic statistical concepts commonly applied in research across the health sciences. With plenty of real-world examples, the new edition provides a practical, modern approach to the statistical topics found in the biomedical and public health fields. Beginning with an overview of descriptive statistics in the health sciences, the book delivers topical coverage of probability models, parameter estimation, and hypothesis testing. Subsequently, the book focuses on more advanced topics with coverage of regression analysis, logistic regression, methods for count data, analysis of survival data, and designs for clinical trials. This extensive update of Introductory Biostatistics, Second Edition includes: • A new chapter on the use of higher order Analysis of Variance (ANOVA) in factorial and block designs • A new chapter on testing and inference methods for repeatedly measured outcomes including continuous, binary, and count outcomes • R incorporated throughout along with SAS®, allowing readers to replicate results from presented examples with either software • Multiple additional exercises, with partial solutions available to aid comprehension of crucial concepts • Notes on Computations sections to provide further guidance on the use of software • A related website that hosts the large data sets presented throughout the book Introductory Biostatistics, Second Edition is an excellent textbook for upper-undergraduate and graduate students in introductory biostatistics courses. The book is also an ideal reference for applied statisticians working in the fields of public health, nursing, dentistry, and medicine.
This introductory text presents the use of statistical methods as an integral part of biological investigation, yet one whose superficial complexities have deterred many biologists from using them. The author argues that the difficulties, such as they are, do not lie in mathematical manipulation, but in grasping a few simple, but unfamiliar concepts. He emphasizes the need for precisely defining problems and for careful selection of the most appropriate methods - a wide range of which are described and illustrated. Each chapter ends with a set of problems which are intended to help the student gain practical experience. No previous knowledge is assumed, and the student is encouraged to develop a competent and critical approach to analysing numerical data. In this second edition, the scope of the book has been extended, problems have been solved in a more satisfactory way, and a greater number of illustrative examples have been added.
"Introductory Biostatistics for the Health Sciences" ist eine fundierte Einführung in die Biostatistik und ihre Anwendungsgebiete. Der Band richtet sich vorwiegend an Mediziner und Statistiker. Theorie und Praxis stehen im ausgewogenen Verhältnis, d.h. praktische Anwendungen werden, wo nötig, durch den theoretischen Hintergrund ergänzt. Der Schwerpunkt liegt eindeutig auf der praktischen Anwendung. Der Band geht auch auf jüngste Fortschritte bei der Bootstrap-, Outlier- und Meta-Analyse ein, Themen, die in der Regel in Konkurrenzwerken, nicht behandelt werden. Mit einer Fülle von Übungsaufgaben. Auch Statistiksoftware wird ausführlich besprochen.
The Analysis of Biological Data provides students with a practical foundation of statistics for biology students. Every chapter has several biological or medical examples of key concepts, and each example is prefaced by a substantial description of the biological setting. The emphasis on real and interesting examples carries into the problem sets where students have dozens of practice problems based on real data. The third edition features over 200 new examples and problems. These include new calculation practice problems, which guide the student step by step through the methods, and a greater number of examples and topics come from medical and human health research. Every chapter has been carefully edited for even greater clarity and ease of use. All the data sets, R scripts for all worked examples in the book, as well as many other teaching resources, are available to qualified instructors (see below).
Offering a student-focused introduction to the use of statistics in the study of the biosciences, this text looks at statistical techniques and other essential tools for bioscientists, giving students the confidence to use and further explore the key techniques for themselves.
This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.