Introduction to Biomass Energy Conversions

Introduction to Biomass Energy Conversions

Author: Sergio Capareda

Publisher: CRC Press

Published: 2013-07-09

Total Pages: 649

ISBN-13: 1466513330

DOWNLOAD EBOOK

The potential that biomass energy has to supplement traditional fuels and reduce greenhouse gas emissions has put it front and center in the plan to replace fossil-based fuels with renewable fuels. While much has been written about biomass conversions, no single textbook contains all the information needed to teach a biomass conversion course—until now. Introduction to Biomass Energy Conversions presents a comprehensive review of biomass resources available for conversion into heat, power, and biofuels. The textbook covers biomass characterization and discusses facilities, equipment, and standards (e.g. ASTM or NREL) used for analysis. It examines the range of biomass resources available for conversion and presents traditional biomass conversion processes along with extensive biomass characterization data tables, illustrations, and graphical presentations of the various biomass energy conversion processes. The author also describes how to set up a laboratory for biomass energy conversion, and presents economics and sustainability issues. Loaded with real-world examples, the text includes numerous worked examples and problems in each chapter. No one knows what the price of oil will be next year or in future decades. It is governed by many factors other than supply and demand (politics, wars, etc.), however, whatever the future of energy is, bio-fuels will play an important role. This technical guide prepares students for managing bio-refineries, no matter what type of bio-fuel is produced. It also provides practicing engineers with a resource for starting a small bio-fuel business.


Bioenergy

Bioenergy

Author: Anju Dahiya

Publisher: Academic Press

Published: 2020-04-09

Total Pages: 892

ISBN-13: 0128154985

DOWNLOAD EBOOK

Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition presents a complete overview of the bioenergy value chain, from feedstock to end products. It examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources. Divided into seven parts, bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life-cycle analysis, energy return on invested, integrated sustainability assessments, conversions technologies, biofuels economics, business, and policy. In addition, contributions from leading industry professionals and academics, augmented by related service-learning case studies and quizzes, provide readers with a comprehensive resource that connect theory to real-world implementation.Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition provides engineers, researchers, undergraduate and graduate students, and business professionals in the bioenergy field with valuable, practical information that can be applied to implementing renewable energy projects, choosing among competing feedstocks, technologies, and products. It also serves as a basic resource for civic leaders, economic development professionals, farmers, investors, fleet managers, and reporters interested in an organized introduction to the language, feedstocks, technologies, and products in the biobased renewable energy world. - Includes current and renewed subject matter, project case studies from real world, and topic-specific sections on the impacts of biomass use for energy production from all sorts of biomass feedstocks including organic waste of all kinds - Provides a comprehensive overview and in-depth technical information of all possible bioenergy resources: solid (wood energy, grass energy, waste, and other biomass), liquid (biodiesel, algae biofuel, ethanol, waste to oils, etc.), and gaseous/electric (biogas, syngas, biopower, RNG), and cutting-edge topics such as advanced fuels - Integrates current state of art coverage on feedstocks, cost-effective conversion processes, biofuels economic analysis, environmental policy, and triple bottom line - Features quizzes for each section derived from the implementation of actual hands-on biofuel projects as part of service learning


Solar Energy Conversion

Solar Energy Conversion

Author: A. E. Dixon

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 1325

ISBN-13: 1483189287

DOWNLOAD EBOOK

Solar Energy Conversion: An Introductory Course is a collection of papers that deals with the technical, mechanical, and operation concerns in converting solar energy. The title first details solar radiation, and then proceeds to discussing solar collectors. Next, the selection covers selective surfaces and the thermal regulation of buildings. The text also talks about planning of solar architectures. The next part tackles topics about the direct conversion of solar energy. Part VII discusses the control and measurement of collected solar energy, while Part VIII covers bioconversion and biomass. The book will be of great use to engineering and science students. Professionals involved in the research and development of solar technology will also benefit from the text.


Introduction to Bioenergy

Introduction to Bioenergy

Author: Vaughn C. Nelson

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 261

ISBN-13: 1498716997

DOWNLOAD EBOOK

Explore a Major Component of Renewable Energy Introduction to Bioenergy takes a look at energy from biomass (thermal energy, power, liquid fuels, and biogas) and envisions a sustainable future fueled by renewable energy. From production to conversion to heat, power, and biofuel, this book breaks down the science of bioenergy and explains the major processes for its production, conversion, and use. Covers Solar Energy, Bioenergy, and Biomass Resources The book begins with an introduction to solar energy (the source of bioenergy) and then moves on to describe bioenergy, biomass, chemical conversion, and the renewable energy processes involved. The authors cover measurement energy parameters, analysis of data, and the prediction of energy production for different bio products. They also consider the institutional, environmental, and economic concerns surrounding bioenergy. An all-inclusive resource covering a rapidly-advancing field, this book: Explores the impact of climate change and global warming on the production of biomass Describes the positive and negative effects of biomass production on ecosystems and biodiversity Illustrates the use of biomass for the production of electricity Considers the replacement of fossil fuels with biofuels, biofuel production, and emerging technologies Addresses institutional and environmental issues relevant to bioenergy Discusses factors impacting the economic feasibility of renewable energy systems Introduction to Bioenergy defines major processes for the production, conversion, and use of bioenergy. A book suitable for coursework or self-study, this essential work serves students and practicing professionals in the renewable energy, environmental science, agriculture engineering, and biology fields.


Solar Energy Conversion II

Solar Energy Conversion II

Author: A. F. Janzen

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 660

ISBN-13: 1483155900

DOWNLOAD EBOOK

Solar Energy Conversion II presents the proceedings of the 1980 International Symposium on Solar Energy Utilization, held in Ontario, Canada on August 10-24, 1980. This book provides information on the utilization of solar energy and on the difficulties encountered in its implementation. Organized into 42 chapters, this compilation of papers begins with an overview of the important parameter in solar radiation measurement. This text then examines the use of solar radiation measurement, the solar radiation scales, the solar radiation units, and the types of solar radiation. Other chapters consider the general problems linked with building up data banks of observed solar radiation data. This book discusses as well the fundamental modes of heat transfer. The final chapter deals with the necessity to incorporate energy education into other disciplines like space geometry. This book is a valuable resource for politicians, government officials, engineers, scientists, and research workers. Technologists working on solar energy will also find this book useful.


Biomass Conversion Processes for Energy and Fuels

Biomass Conversion Processes for Energy and Fuels

Author: Samir S. Sofer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 420

ISBN-13: 1475703015

DOWNLOAD EBOOK

Countless pages have been written on alternative energy sources since the fall of 1973 when our dependence on fossil petroleum resources became a grim reality. One such alternative is the use of biomass for producing energy and liquid and gaseous fuels. The term "biomass" generally refers to renewable organic matter generated by plants through photosynthesis. Thus trees, agri cultural crops, and aquatic plants are prime sources of biomass. Furthermore, as these sources of biomass are harvested and processed into commercial prod ucts, residues and wastes are generated. These, together with municipal solid wastes, not only add to the total organic raw material base that can be utilized for energy purposes but they also need to be removed for environmental reasons. Biomass has been used since antiquity for energy and material needs. In is still one of the most sought-after energy sources in most of the fact, firewood world. Furthermore, wood was still a dominant energy source in the U. S. only a hundred years ago (equal with coal). Currently, biomass contributes about 15 2 quadrillion Btu (l quad = 10 Btu) of energy to our total energy consump tion of about 78 quad. Two quad may not seem large when compared to the contribution made by petroleum (38 quad) or natural gas (20 quad), but bio mass is nearly comparable to nuclear energy (2. 7 quad).


Climate Intervention

Climate Intervention

Author: National Research Council

Publisher: National Academies Press

Published: 2015-06-17

Total Pages: 235

ISBN-13: 0309305322

DOWNLOAD EBOOK

The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.


Electric Renewable Energy Systems

Electric Renewable Energy Systems

Author: Muhammad H. Rashid

Publisher: Academic Press

Published: 2015-11-25

Total Pages: 604

ISBN-13: 0128006366

DOWNLOAD EBOOK

- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells


Exergy Analysis for Energy Conversion Systems

Exergy Analysis for Energy Conversion Systems

Author: Efstathios Michaelides

Publisher: Cambridge University Press

Published: 2021-04-08

Total Pages: 317

ISBN-13: 1108573797

DOWNLOAD EBOOK

Discover a straightforward and holistic look at energy conversion and conservation processes using the exergy concept with this thorough text. Explains the fundamental energy conversion processes in numerous diverse systems, ranging from jet engines and nuclear reactors to human bodies. Provides examples for applications to practical energy conversion processes and systems that use our naturally occurring energy resources, such as fossil fuels, solar energy, wind, geothermal, and nuclear fuels. With more than one-hundred diverse cases and solved examples, readers will be able to perform optimizations for a cleaner environment, a sustainable energy future, and affordable energy generation. An essential tool for practicing scientists and engineers who work or do research in the area of energy and exergy, as well as graduate students and faculty in chemical engineering, mechanical engineering and physics.


Design, Analysis and Applications of Renewable Energy Systems

Design, Analysis and Applications of Renewable Energy Systems

Author: Ahmad Taher Azar

Publisher: Academic Press

Published: 2021-09-09

Total Pages: 762

ISBN-13: 0323859917

DOWNLOAD EBOOK

Design, Analysis and Applications of Renewable Energy Systems covers recent advancements in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems as conveyed by leading energy systems engineering researchers. The book focuses on present novel solutions for many problems in the field, covering modeling, control theorems and the optimization techniques that will help solve many scientific issues for researchers. Multidisciplinary applications are also discussed, along with their fundamentals, modeling, analysis, design, realization and experimental results. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Presents some of the latest innovative approaches to renewable energy systems from the point-of-view of dynamic modeling, system analysis, optimization, control and circuit design - Focuses on advances related to optimization techniques for renewable energy and forecasting using machine learning methods - Includes new circuits and systems, helping researchers solve many nonlinear problems