The Theory of H(b) Spaces: Volume 1

The Theory of H(b) Spaces: Volume 1

Author: Emmanuel Fricain

Publisher: Cambridge University Press

Published: 2016-05-26

Total Pages: 703

ISBN-13: 1316060918

DOWNLOAD EBOOK

An H(b) space is defined as a collection of analytic functions which are in the image of an operator. The theory of H(b) spaces bridges two classical subjects: complex analysis and operator theory, which makes it both appealing and demanding. The first volume of this comprehensive treatment is devoted to the preliminary subjects required to understand the foundation of H(b) spaces, such as Hardy spaces, Fourier analysis, integral representation theorems, Carleson measures, Toeplitz and Hankel operators, various types of shift operators, and Clark measures. The second volume focuses on the central theory. Both books are accessible to graduate students as well as researchers: each volume contains numerous exercises and hints, and figures are included throughout to illustrate the theory. Together, these two volumes provide everything the reader needs to understand and appreciate this beautiful branch of mathematics.


Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and their Applications

Author: Manfred Möller

Publisher: Birkhäuser

Published: 2015-06-11

Total Pages: 418

ISBN-13: 3319170708

DOWNLOAD EBOOK

The theoretical part of this monograph examines the distribution of the spectrum of operator polynomials, focusing on quadratic operator polynomials with discrete spectra. The second part is devoted to applications. Standard spectral problems in Hilbert spaces are of the form A-λI for an operator A, and self-adjoint operators are of particular interest and importance, both theoretically and in terms of applications. A characteristic feature of self-adjoint operators is that their spectra are real, and many spectral problems in theoretical physics and engineering can be described by using them. However, a large class of problems, in particular vibration problems with boundary conditions depending on the spectral parameter, are represented by operator polynomials that are quadratic in the eigenvalue parameter and whose coefficients are self-adjoint operators. The spectra of such operator polynomials are in general no more real, but still exhibit certain patterns. The distribution of these spectra is the main focus of the present volume. For some classes of quadratic operator polynomials, inverse problems are also considered. The connection between the spectra of such quadratic operator polynomials and generalized Hermite-Biehler functions is discussed in detail. Many applications are thoroughly investigated, such as the Regge problem and damped vibrations of smooth strings, Stieltjes strings, beams, star graphs of strings and quantum graphs. Some chapters summarize advanced background material, which is supplemented with detailed proofs. With regard to the reader’s background knowledge, only the basic properties of operators in Hilbert spaces and well-known results from complex analysis are assumed.


Linear Algebra in Action

Linear Algebra in Action

Author: Harry Dym

Publisher: American Mathematical Society

Published: 2023-06-23

Total Pages: 512

ISBN-13: 1470474190

DOWNLOAD EBOOK

This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.


The Theory of H(b) Spaces

The Theory of H(b) Spaces

Author: Emmanuel Fricain

Publisher: Cambridge University Press

Published: 2016-05-26

Total Pages: 703

ISBN-13: 1107027772

DOWNLOAD EBOOK

This is volume 1 of a 2 volume set.


Nonlinear Dirac Equation: Spectral Stability of Solitary Waves

Nonlinear Dirac Equation: Spectral Stability of Solitary Waves

Author: Nabile Boussaïd

Publisher: American Mathematical Soc.

Published: 2019-11-21

Total Pages: 306

ISBN-13: 1470443953

DOWNLOAD EBOOK

This monograph gives a comprehensive treatment of spectral (linear) stability of weakly relativistic solitary waves in the nonlinear Dirac equation. It turns out that the instability is not an intrinsic property of the Dirac equation that is only resolved in the framework of the second quantization with the Dirac sea hypothesis. Whereas general results about the Dirac-Maxwell and similar equations are not yet available, we can consider the Dirac equation with scalar self-interaction, the model first introduced in 1938. In this book we show that in particular cases solitary waves in this model may be spectrally stable (no linear instability). This result is the first step towards proving asymptotic stability of solitary waves. The book presents the necessary overview of the functional analysis, spectral theory, and the existence and linear stability of solitary waves of the nonlinear Schrödinger equation. It also presents the necessary tools such as the limiting absorption principle and the Carleman estimates in the form applicable to the Dirac operator, and proves the general form of the Dirac-Pauli theorem. All of these results are used to prove the spectral stability of weakly relativistic solitary wave solutions of the nonlinear Dirac equation.


Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis

Author: Bo'az Klartag

Publisher: Springer Nature

Published: 2020-06-20

Total Pages: 346

ISBN-13: 3030360202

DOWNLOAD EBOOK

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain's slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressed is the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Science and to Differential Geometry are also discussed.


Analysis and Operator Theory

Analysis and Operator Theory

Author: Themistocles M. Rassias

Publisher: Springer

Published: 2019-05-31

Total Pages: 419

ISBN-13: 3030126617

DOWNLOAD EBOOK

Dedicated to Tosio Kato’s 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg–de Vries equation, the Navier–Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland–Kato commutator problem, the Kato-class of potentials, and the Trotter–Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato’s impact to research in analysis and operator theory.


Jacobi Matrices and the Moment Problem

Jacobi Matrices and the Moment Problem

Author: Yurij M. Berezansky

Publisher: Springer Nature

Published: 2024-01-06

Total Pages: 489

ISBN-13: 3031463870

DOWNLOAD EBOOK

This monograph presents the solution of the classical moment problem, the construction of Jacobi matrices and corresponding polynomials. The cases of strongly,trigonometric, complex and real two-dimensional moment problems are discussed, and the Jacobi-type matrices corresponding to the trigonometric moment problem are shown. The Berezansky theory of the expansion in generalized eigenvectors for corresponding set of commuting operators plays the key role in the proof of results. The book is recommended for researchers in fields of functional analysis, operator theory, mathematical physics, and engineers who deal with problems of coupled pendulums.