Introduction to the Theory and Application of Differential Equations with Deviating Arguments

Introduction to the Theory and Application of Differential Equations with Deviating Arguments

Author: L.E. El'sgol'ts

Publisher: Academic Press

Published: 1973-11-02

Total Pages: 356

ISBN-13: 0080956149

DOWNLOAD EBOOK

Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.


Differential Equations and Applications, Volume 4

Differential Equations and Applications, Volume 4

Author: Yeol Je Cho

Publisher: Nova Publishers

Published: 2007-07-02

Total Pages: 184

ISBN-13: 9781594548765

DOWNLOAD EBOOK

The aim of this volume is to introduce new topics on the areas of difference, differential, integrodifferential and integral equations, evolution equations, control and optimisation theory, dynamic system theory, queuing theory and electromagnetism and their applications.


Encyclopaedia of Mathematics

Encyclopaedia of Mathematics

Author: Michiel Hazewinkel

Publisher: Springer Science & Business Media

Published: 1988

Total Pages: 540

ISBN-13: 9781556080036

DOWNLOAD EBOOK

V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.


Introduction to the Theory and Applications of Functional Differential Equations

Introduction to the Theory and Applications of Functional Differential Equations

Author: V. Kolmanovskii

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 648

ISBN-13: 9401719659

DOWNLOAD EBOOK

This book covers the most important issues in the theory of functional differential equations and their applications for both deterministic and stochastic cases. Among the subjects treated are qualitative theory, stability, periodic solutions, optimal control and estimation, the theory of linear equations, and basic principles of mathematical modelling. The work, which treats many concrete problems in detail, gives a good overview of the entire field and will serve as a stimulating guide to further research. Audience: This volume will be of interest to researchers and (post)graduate students working in analysis, and in functional analysis in particular. It will also appeal to mathematical engineers, industrial mathematicians, mathematical system theoreticians and mathematical modellers.


Handbook of Differential Equations

Handbook of Differential Equations

Author: Daniel Zwillinger

Publisher: Gulf Professional Publishing

Published: 1998

Total Pages: 842

ISBN-13: 9780127843964

DOWNLOAD EBOOK

This book compiles the most widely applicable methods for solving and approximating differential equations. as well as numerous examples showing the methods use. Topics include ordinary differential equations, symplectic integration of differential equations, and the use of wavelets when numerically solving differential equations. For nearly every technique, the book provides: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users References to the literature for more discussion or more examples, including pointers to electronic resources, such as URLs


Introduction to the Theory of Differential Equations with Deviating Arguments

Introduction to the Theory of Differential Equations with Deviating Arguments

Author: Lev Ėrnestovich Ėlʹsgolʹt︠s︡

Publisher:

Published: 1966

Total Pages: 128

ISBN-13:

DOWNLOAD EBOOK

The book presented here is intended briefly, and within the possibilities of its simple form, to acquaint the reader with the basic theory of differential equations with deviating arguments. In recent years this subject has found wide application, not only in the theory of automatic control, but also in many other areas of technology, in various problems of physics, in economics, and even in the biological sciences.


Differential Equations and the Calculus of Variations

Differential Equations and the Calculus of Variations

Author: Lev Elsgolts

Publisher:

Published: 2003-12-01

Total Pages: 444

ISBN-13: 9781410210678

DOWNLOAD EBOOK

Originally published in the Soviet Union, this text is meant for students of higher schools and deals with the most important sections of mathematics - differential equations and the calculus of variations. The first part describes the theory of differential equations and reviews the methods for integrating these equations and investigating their solutions. The second part gives an idea of the calculus of variations and surveys the methods for solving variational problems. The book contains a large number of examples and problems with solutions involving applications of mathematics to physics and mechanics. Apart from its main purpose the textbook is of interest to expert mathematicians. Lev Elsgolts (deceased) was a Doctor of Physico-Mathematical Sciences, Professor at the Patrice Lumumba University of Friendship of Peoples. His research work was dedicated to the calculus of variations and differential equations. He worked out the theory of differential equations with deviating arguments and supplied methods for their solution. Lev Elsgolts was the author of many printed works. Among others, he wrote the well-known books Qualitative Methods in Mathematical Analysis and Introduction to the Theory of Differential Equations with Deviating Arguments. In addition to his research work Lev Elsgolts taught at higher schools for over twenty years.


An Introduction to Delay Differential Equations with Applications to the Life Sciences

An Introduction to Delay Differential Equations with Applications to the Life Sciences

Author: hal smith

Publisher: Springer Science & Business Media

Published: 2010-09-29

Total Pages: 178

ISBN-13: 1441976469

DOWNLOAD EBOOK

This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.